
CS2 Software Engineering note 4 CS2Ah 14.10.2002

Software Measurement

We can’t accurately measure software, yet we must have measures if we are
to understand large-scale design. This lecture discusses: the practical aims of
measurement; the measures appropriate to them; ways of identifying and priori-
tising measurement issues; how to put together a measurement plan; the limi-
tations common to many measurement methods; and the use of measurement
indicators and estimators.

0.1 Why Measure?

In traditional, structured lifecycles we want to:

� Assess and manage risk.

� Trade design decisions against others.

� Track progress.

� Justify objectives.

It is difficult to do any of these things in an objective way unless we have
some picture of where we are in a project and how much progress we have made
in design.

0.2 What is it Useful to Measure

Although software itself resists absolute measurement there are many aspects of
software projects for which measurement (even rough or indirect measurement)
may be useful:

Schedule : Is it on time?

Cost : Can we afford to finish?

Growth : Will it scale?

Quality : Is it well made?

Ability : How good are we at design?

Technology : Is the technology viable?

1



CS2 Software Engineering note 4 CS2Ah 14.10.2002

These interact. For example, design ability influences the cost of running to
completion which interacts with the way the project schedule is put together
which has an impact on software quality which contributes to the growth of the
system. In the sections below we look at each of these aspects in more detail,
listing important categories of measure and suggesting some appropriate units
of measure for these categories.

0.2.1 Issue Categories (1): Schedule

Category Measure
Milestone Date of delivery
Work unit Component status

Requirement sta-
tus
Paths tested
Problem report
status
Reviews com-
pleted
Change request
status

0.2.2 Issue Categories (2): Cost

Category Measure
Personnel Effort

Staff experience
Staff turnover

Financial
perfor-
mance

Earned value

Cost
Environment
availability

Availability dates

Resource utilisa-
tion

2



CS2 Software Engineering note 4 CS2Ah 14.10.2002

0.2.3 Issue Categories (3): Growth

Category Measure
Product size
and stabil-
ity

Lines of code

Components
Words of memory
Database size

Functional
size and
stability

Requirements

Function points
Change request
workload

0.2.4 Issue Categories (4): Quality

Category Measure
Defects Problem reports

Defect density
Failure interval

Rework Rework size
Rework effort

0.2.5 Issue Categories (5): Ability

Category Measure
Process ma-
turity

Capability matu-
rity model level

Productivity Product
size/effort
Functional
size/effort

3



CS2 Software Engineering note 4 CS2Ah 14.10.2002

0.2.6 Issue Categories (6): Technology

Category Measure
Performance Cycle time
Resource
utilisation

CPU utilisation

I/O utilisation
Memory utilisa-
tion
Response time

0.3 Identifying and Prioritising Issues

The issues we described above are not equally important for all projects. It is
necessary, therefore, to find the ones which matter and prioritise them. Identifi-
cation is possible from various sources, including:

� Risk assessments.
� Project constraints (e.g. budgets).

� Leveraging technologies (e.g. COTS).
� Product acceptance criteria.

� External requirements.
� Past projects.

Prioritisation usually requires some succinct form of contrast between issues,
based on previous projects. Sometimes it is possible to obtain (rough) probabili-
ties of occurrence of identified issues; then modify these according to the impact
each would have if it became a real problem and the exposure to which your
particular project has to that sort of problem. The table below is an example
presentation of this sort of prioritisation.

Issue Probability Relative Project
of occurrence impact exposure

Aggressive
sched-
ule

1.0 10 10

Unstable
reqs

1.0 8 8

Staff ex-
perience

1.0 5 8

Reliability
reqs

0.9 3 4

COTS
perfor-
mance

0.2 9 1

4



CS2 Software Engineering note 4 CS2Ah 14.10.2002

0.4 Making a Measurement Plan

It is likely that you will want to take measurements several times during the
course of a large software project and in those circumstances a measurement
plan will be needed. The following are some of the things measurement plans
typically contain:

� Issues and measures.

� Data sources.

� Levels of measurement.

� Aggregation structure.

� Frequency of collection.

� Method of access.

� Communication and interfaces.

� Frequency of reporting.

0.5 Limitations of Measurement

Measurement is necessary but fallible and subject to many practical limita-
tions. Some of these, concerning the measurement categories introduced in
Section 0.2, are listed below.

� Milestones don’t measure effort, only give critical paths.

� Difficult to compare relative importance of measures.

� Incremental design requires measuring of incomplete functions.

� Important measures may be spread across components.

� Cost of design is not an indicator of performance.

� Current resource utilisation may not be best.

� Reliable historical data is hard to find.

� Some software statistics are time consuming to collect.

� Some measures only apply after coding has been done.

� Size doesn’t map directly to functionality, complexity or quality.

� Time lag between problems and their appearance in reports.

5



CS2 Software Engineering note 4 CS2Ah 14.10.2002

� Changes suggested by one performance indicator may effect others.

� Often no distinction between work and re-work.

� Overall capability maturity level may not predict performance on a specific
project.

� Technical performance measures often are not as precise as they may seem.

� Technical resource utilisation may only be known after integration and test-
ing.

Be sure also to consider how you will maintain the quality of your measure-
ment data, for example:

� Are units of measure comparable (e.g. lines of code in Ada versus Java)?
Normalisation?

� What are acceptable ranges for data values?

� Can we tolerate gaps in data supplied?

� When does change to values amount to re-planning.

0.6 Exercise

Choose any small-scale software project that interests you and write a measure-
ment plan for it. Compare your measurement plan with those of your classmates
(this is especially interesting if you independently wrote measurement plans for
the same project). Which is most convincing and why?

6


