
1

Agent Oriented Engineering

• Ubiquitous computing
• The Semantic Web
• Computational Grids

Three major technological waves:

All these are (partly) agent architectures.

2

Ubiquitous Computing

Device
1

Device
2

Device
3

Device Device

Environment 1 Environment 2

3

Semantic Web

Service 1

Specification 1

Service 2

Specification 2

Composition

BrokeringTask Specification 3

4

Computational Grid

Service 1

Specification 1

Service 2

Specification 2

Composition

BrokeringTask Specification 3

Device
1

Device
2

Device
3

5

Why Are These Similar?

• All assume millions of components.
• All want to minimise standardisation of

components themselves.
• All assume autonomous components.
• All need standardisation of component

interaction.
• All need opportunistic interaction.

6

Why Do They Look Different?

• Differing engineering traditions:
– Ubiquitous: Communications
– Semantic Web: Knowledge engineering
– Computational Grid: Supercomputing

• Differing design priorities:
– Ubiquitous: Opportunistic interaction
– Semantic Web: Evolution from Web
– Computational Grid: Reliability and performance

7

Why Should I Believe You Built
a Well Engineered System?

• You can prove it is good from analysis
of its structure.

• You used a trusted design process.
• You are a trusted engineer.

8

The Dilemma
"What is particularly impressive is the way that scientists are now
undaunted by important complex phenomena...The emerging field of e-
science should transform this kind of work...One of the pilot e-science
projects is to develop a digital mammographic archive, together with an
intelligent medical decision support system for breast cancer diagnosis
and treatment....So the surgeon in the operating room will be able to pull
up a high-resolution mammogram to identify exactly where the tumour
can be found."

Tony Blair, Speech to Royal Society, 23rd May 2002

“Design and Development: Software Architecture Design…
Artificial Intelligence…NR [Not Recommended]”

IEC 61508 standard for safety-related software

9

Agents and S.E. Lifecycles

Requirements

Architecture

Specification

Code

Verified specification

Verified architecture

Validated requirements

Some folk do this
but not this

Other folk
just do this

10

Issue 1: Social Protocols

• Naïve view is that, since agents operate
autonomously they can be designed
autonomously.

• Impractical – consider auctions.
• So need a separable definition of social

protocol (or social norm or institution).

11

Issue 2: Specification Level

• Which aspects do we specify (e.g.
knowledge, beliefs, temporal
constraints,…)?

• Do these refine to code (e.g. institutions
to object classes and FSMs)?

12

Issue 3: Spec. versus Deploy

A. Most agent formal specs don’t execute.
B. Most executable code is in Java et.al.
• Hard to get from A to B.
• Options include:

– Simulation
– Constructive proof
– Model checking

13

Issue 4: Aggregate Behaviours

• Naïve view of multi-agent design:
– Build individual agents reliably.
– Let them communicate via a dependable protocol
– Now the multi-agent system is dependable

• What is the alternative?
– Ignore the issue
– Standardise
– Build predictive models

