Software Maintenance and

Evolution

CS3 / SEOC1
Note 15

0-0

Maintenance and Evolution:
From CS2 notes

e Types of maintenance:

corrective: correcting faults in system
behaviour. Caused by errors in coding,

design or requirements

adaptive: due to changes in operating

environment (e.g. different hardware or

0S)

perfective: due to changes in requirements.
Often triggered by organisational, business

or user learning

Also preventive maintenance; e.g. dealing

with legacy systems

Software re-engineering an approach to
dealing with legacy systems through

re-implementation.

Some Maintenance Statistics

e maintenance consumes 40% — 80% of total
costs

e typical developer’s activity (from Lientz and
Swanston’s review of 487 companies):
48% maintenance
46.1% new development
5.9% other

e huge quantities of legacy code:

— US/DoD maintains more than 1.4 billion
LOC for non-combat information systems,

over more than 1700 data centres.
Estimated to cost $9 billion per annum.

(in 1999) Boeing payroll system: approx
22 years old; 660K LOC COBOL

Bell Northern Research’s entire operation
is maintenance of one system — telephone
switching product line. 12 million LOC
(assembly and “higher-level” languages),
approx. 1 million 10C revised annually

Distribution of Maintenance Effort:

Vet and Lientz and Swanston

corrective (approx. 21%):
12.4% emergency debugging
9.3% routine debugging

adaptive (approx. 25%):
17.3% data environment adaption

6.2% changes to hardware or OS

perfective (approx. 50%):
41.8% enhancements for users

5.5% improve documentation

3.4% other

preventive (approx. 4%):

4.0% improve code efficiency

Maintenance is hard because:
key design concepts not captured
systems not robust under change

poor documentation
— of code
— of design process and rationale

— of system’s evolution. ..

“stupid” code features may not be so stupid

— work-arounds of artificial constraints, may
no longer be documented (e.g. OS bugs,

undocumented features, memory limits)

poor (management) attitudes

— maintenance not “sexy”
— it’s just “patching code”

— easier/ less important than design (does
not need similar level of support — tools,

modelling, documentation, management)

e SEOC addresses all these issues. How?. ..

Managing Maintenance

Corrective: requires maintenance strateqy,
preferably negotiated contract between

supplier and customer(s)
e policies for reporting and fixing of errors;

auditing of process

Perfective: should be treated as development
(i.e. requirements, specification, design,

testing, ...)

iterative (or evolutionary) development

approach best suited
risks: drift, shift, creep, ooze, bloat, ...
when does design or development stop?

Adaptive and Preventive: can anticipate,

schedule, estimate, monitor and manage. . .

Maintenance Management Case
Study (1)

e Spring Mills Inc.: early 1970’s

— programming shop runs 24 hours a day, 6

days a week
— 3000+ programs in production

— approx. 700 new programs per year

e 1972, John Mooney assessed operation as:

overworked programmers operating under

stress

new systems typically over budget and late
no designated maintenance staff

approx. 75 maintenance requests per week
no maintenance strategy or planning

developers time: 30% maintenance; 45%
new development; 10% special; 14% admin

Maintenance Management Case
Study (2)

e 1973, Mooney reorganises shop and creates

maintenance team

— management strategy: requests logged,
classified, evaluated, prioritised and

assigned

team responsibilities: fast; good
programming standards; regression testing

of modified programs
numerous incentives, including financial
team responsible for all existing programs

new programs “signed over” to team when
error- and change-free for 90 days
x sign-over activity becomes significant

project landmark

Maintenance Management Case
Study (3)

e Outcome:

— maintenance team becomes “highly skilled,

elite corps of multi-lingual experts”

deep understanding of company’s systems

x particularly troublesome dependencies

offers services as “system auditors” or

“consultants” on difficult problems
— de facto quality assurance stakeholders
e leads to overall developers time:

20% maintenance; 57.9% new development;

21.3% special and admin

e previously, developers time:
30% maintenance; 45% new development;
24% special and admin

e everybody happy...

Preventive Maintenance

e accounts for 4% of maintenance requests, but
— Pareto Principle applies

— legacy systems increasing problem

e Software Migration approaches:

Redevelopment: rebuild system from
scratch. Easier problem (initially) but
costly and very high risk

Transformation: to (typically) new

language/ paradigm:

restructure c.f. refactoring

re-engineer typically reverse-engineering
followed by forward-engineering

design recapture recreate design
abstractions from code, documentation,
personal experience, general problem

and domain knowledge

Encapsulation: “Software Wrapping” —

wrap up existing code as components

Software Wrapping Case Study (1):

Sparkasse: (German savings and loan
organisation
7 regional computing centres; client-server

batch processing on conventional mainframe

systems; code (variously) in Assembler, PL/1,

COBOL and NATURAL
legacy host systems highly integrated
desired to introduce OO and components

wrapping approach taken:

— reuse S/W by encapsulating and
controlling access via API’s (Application

Program Interfaces)

— reuses existing S/W without moving it to

new environment

— legacy S/W remains, with minor changes,
in native environment — yet is accessible to

newer distributed OO components

10

Software Wrapping Case Study (2)

e 1997: Wrapping pilot-project undertaken

e 5 encapsulation levels:

Job: remotely invoked batch-type job control

procedures
Transaction: client-server transactions
Program: remotely invoked batch program

Module: native code modules (easiest to

wrap — already “component-ish”)

Procedure: individual procedure within

legacy code (hardest to wrap)

11

Sparkasse: Issues/ lessons learned

e adaption of all subprograms necessary

e server to host communication weakest link

— character conversion, ASCII to EBCDIC,

common
— constant translation and re-translation
e testing time-consuming due to high number
of dependencies
e 5 step, bottom-up testing strategy:

1. test adapted program in controlled

test-harness

. test wrapper software with driver for client

and stub for wrapped code
. test wrapper and wrapped code

. Integration test: complete client-server

transaction

. system test: multiple transactions to test

reentrancy of wrapper and wrapped code

12

Summary

e Maintenance
1s important
is difficult and costly
can, and should, be managed
has a bad reputation, but can and should
be challenging and rewarding
e legacy systems a significant and increasing
problem
— number of approaches to dealing with this

— many involve transforming to OO and/ or

component based paradigm

* abstraction/ high cohesion;

encapsulation/ low coupling

e SEOC helps. How?
— You really should be able to work this out

for yourself by now. . .

13

