Implementation models in UML:
Component and Deployment
Diagrams

CS3 / SEOC1

Note 14

UML Implementation Diagrams show

aspects of implementation, including

source code structure and run-time

implementation structure.
Implementation diagrams come in two
forms: (i) component diagrams show the
structure of the code itself; (ii)
deployment diagrams show the structure

of the run-time system.

Component Diagrams

A component diagram shows the
dependencies among software
components, including source code, binary
code and executable components. Some
components exist at compile time, some
exist at link time, and some exist at run

time; some exist at more than one time.

Crder
Processing
System

Data - Data
Frocessor

Manager

Components have...

Interfaces: (can be) represented

Context dependencies:

implementation-specific: shown on
diagram

use-contexts: may be described elsewhere.
For example: accompanying
documentation, use cases, interactions

diagrams (c.f. design patterns), ...

Deployment Diagrams

A Deployment diagram shows the
configuration of run-time processing
elements and the software components,
processes, and objects. Software
component instances represent run-time
manifestations of code units. Components
that do not exist as run-time entities do
not appear on these diagrams. These
components should be shown on

component diagrams.

In other words, a deployment diagram
shows your system’s hardware, the
software installed on that hardware, and
the middleware that connects the
disparate machines together. A
deployment model is a collection of one
or more deployment diagrams with their

associated documentation.

Example Deployment Diagram

UML Deployment: TCP/IP Layout

The Internet

I
E Web server

TCP/IF

/

a Company Extei?al ACCESE SEIVEr

| [
N R — _Oq;_l:l Firewall
- e <

a Cormpany Intranet Server

[}
l
|
l
i

| |
:Il:‘ruxy server fe—{_je —’:Ipm?dnﬁ“a
;l i V_T_l

TCPR/IP

a Windows PC

i
I
I
|

|
|

!

|

W

I
':I Browser

Deployment Modelling should

consider:

What existing systems will system need to
interact or integrate with?

How robust does system need to be (e.g.
redundant hardware in case of a system
failure)?

What and who will connect to or interact
with system, and how will they do it?

What middleware, including the operating
system and communications approaches and
protocols, will system use?

What hardware and software will users
directly interact with (PCs, network
computers, browsers, ...)?

How will you monitor the system once
deployed?

How secure does the system need to be (needs

a firewall, physically secure hardware, ...)?

Deployment Planning considers:

e How will your system be installed?
Who will install it?
How long should it take to install?

Where can the installation possibly fail?

* How do you back out if the installation fails?
x How long does it take to back out?

What is your installation window (during what time
period can you install your system)?

What backups do you need before installation?
* Do you need to do a data conversion?
How do you know that the installation was

successful?

If different versions of the system will be in production at
the same time, how will you resolve differences?

What physical sites do you need to deploy to and in what
order?
— How will you train your support and operations staff?

— Do you need to deploy a production support system
so that the support staff uses their own environment
to simulate problems?

How will you train your users?

— What documentation, and in what formats and
languages, do your users, and support and operations
staff need?

— How will updates to the documentation be deployed?

Modelling Business Process

e Business modelling using nodes and
components is an effective means of capturing

non-computer based processes and entities.

This can be done very early in development,
to complement the use case model and other

business modelling

components are the business procedures and
documents; the nodes (“run-time structure”
are the organisation units and resources

(human and other) of the business.

<<instance>> R
-7 <<instancez>

Stock : Store SpareParts : Store

=2 momemo S=R—

