Reuse and Components (1)
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Perils of Reuse

(cf. Ariane 5...)




Software Engineering with Objects

and Components

Software Engineering is concerned
with processes, techniques and tools which
enable us to build “good” systems.

Object-Orientation is a (methodology,
technique, process, suite of design and
programming languages and tools) with
which we may build good systems.

Components are “units of reuse and

replacement” .




ESA’s Ariane 5: Flight 501

e June 4th 1996, Ariane 5, veered off flight
path, broke up and exploded less than 40
seconds into its maiden flight

e Inquiry board report July 1996

— sequence of events: nominal behaviour up
to HO+36 seconds; failure of backup
Inertial Reference System (SRI), followed
immediately by failure of active system:;
boosters and main engine swivel to

extreme position, causing abrupt veer;

launcher (correctly) self-destructs

both SRI’s recovered and analysed

active SRI had failed due to software
exception (out-of-range error), On Board
Computer had interpreted diagnostic
report as navigational data




Ariane 5: (root?) error causes

“hardware failure” mentality — reliance on

backups

alignment function (Ariane 4) obsolete in
Ariane 5

consequences of reuse not sufficiently explored

exception handling incomplete (decision and

justification obscured from external review)
V & V inadequate

cooperation amongst Ariane 5 partners

inadequate




Types of Reuse

e Knowledge reuse
— artifact reuse

— pattern reuse

e Software reuse
code reuse
inheritance reuse
template reuse
component reuse

framework reuse




Reuse of Knowledge:
Artifact Reuse

e reuse of use cases, standards, design

guidelines, domain specific-knowledge

e Pluses: consistency between projects, reduced
management burden, global comparitors of

quality and knowledge

e Minuses: overheads, constraints on

innovation (coder versus manager)




Reuse of Knowledge:

Patterns

e reuse of publically documented approaches to
solving problems (e.g. class diagrams of

typically 1-5 classes)

“A pattern is a named nugget of insight that
conveys the essence of a proven solution to a
recurring problem within a certain context

amidst competing concerns.”

See links from SEOCI1 lecture log for more

info on patterns




Patterns (cont.)

e Origin of Patterns:

— Ward Cunningham & Kent Beck: pattern
languages for OO novice programmers —
1987

— Jim Coplien: C+4++ programming idioms —
1991

— “Gang of Four” (Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides)

publish Design Patterns: Elements of
Reusable Object-Oriented Software — 1994

e Pluses: long life-span, applicable beyond
current programming languages, applicable

beyond OO?

e Minuses: no immediate solution, no actual

code, knowledge hard to capture/reuse




Types of Software Reuse:
Code Reuse

reuse of (visible) source code — code reuse

versus code salvage

Pluses: reduces written code, reduces

development and maintenance costs

Minuses: can increase coupling, substantial

initial investment




Types of Software Reuse:

Inheritance
e using inheritance to reuse code behavior

e Pluses: takes advantage of existing behavior,

decrease development time and cost

e Minuses: can conflict with component reuse,
can lead to fragile class hierarchy — difficult to

maintain and enhance
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Types of Software Reuse:
Template Reuse

reuse of common data format/layout (e.g.

document templates, web-page templates)

Pluses: increase consistency and quality,

decrease data entry time

Minuses: needs to be simple, easy to use,

consistent amongst group
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Further Software Reuse:
Component Based Development

e analogy to electronic circuits: software
“plug-ins”
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Further Software Reuse:
Component Reuse

reuse of prebuilt, fully encapsulated
“components”; typically self-sufficient and

provide only 1 concept (high cohesion)

Pluses: greater scope for reuse, common
platforms (e.g. JVM) more widespread, 3rd
party component development

Minuses: development time, genericity, need
large libraries to be useful
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Components: A Definition

“A software component is a unit of
composition with contractually specified
interfaces and explicit context
dependencies only. A software component
can be deployed independently and is

subject to composition by third parties.”

ECOOP ‘96. (European Workshop on

Component-Oriented Programming)
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Further Software Reuse (2)
Framework Reuse

collection of basic functionality of common

technical or business domain (generic “circuit

boards” for components)

Pluses: supports CBD, can account for 80%
of code

Minuses: substantial complexity, leading to
long learning process; platform specific;
framework compatibility issues leading to

vendor specificity; implements easy 80%

cf. software architecture, product line
architectures, domain component reuse,

domain specific programming, . ..
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Summary

many kinds of reuse — of both knowledge and

software
each has pluses and minuses

component reuse is a form of software reuse
encapsulation
high cohesion
specified interfaces

explicit context dependencies
Does this work...?

... tune wn next lecture
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