Reuse and Components (1)

CS3 / SEOC1

Note 12

r——f,_u,__ﬂfﬁ-ﬁu,——ﬂur-nxx
(" WALLY WRITES THE "~
(' CRITICAL CODE FOR <
? OUR MATION'S NE(
ATR TRAFFIC CONTROL rJ
f\ STSTEM . o A

- e
qﬁ‘j‘&fﬁﬁﬁ CROLID
— . (15 SILENT

et

iy | oy
2}.
i

—qﬁ——wf—Hff“vﬁ——v——\\
(SUDDEMLY THE GIFTED
{ PROGRAMMER EM‘F‘.-.GV&)
A RARELY SEEN :
STRATEGY OF “CODE
[REUSE" S—lmmid
~—~_ (THE crowD)
{ GOES WILD.
T

= Adqeag E-mail SCOTTADAMSS a0L, GOM

ndlcebe, Ing.(MYEG)

1) FEE 1886 United Fapture Sy

a0 YOU USED
CODE FROM THE
PAMROLL ﬂE'E AT

SYLT 7
SYSTEM DONT FLY

I.?ﬂ

OILEERT = United Feature Syndicate,

I,

Fedistribution in whole or in part prohibited.

Perils of Reuse

(cf. Ariane 5...)

Software Engineering with Objects

and Components

Software Engineering is concerned
with processes, techniques and tools which
enable us to build “good” systems.

Object-Orientation is a (methodology,
technique, process, suite of design and
programming languages and tools) with
which we may build good systems.

Components are “units of reuse and

replacement” .

ESA’s Ariane 5: Flight 501

e June 4th 1996, Ariane 5, veered off flight
path, broke up and exploded less than 40
seconds into its maiden flight

e Inquiry board report July 1996

— sequence of events: nominal behaviour up
to HO+36 seconds; failure of backup
Inertial Reference System (SRI), followed
immediately by failure of active system:;
boosters and main engine swivel to

extreme position, causing abrupt veer;

launcher (correctly) self-destructs

both SRI’s recovered and analysed

active SRI had failed due to software
exception (out-of-range error), On Board
Computer had interpreted diagnostic
report as navigational data

Ariane 5: (root?) error causes

“hardware failure” mentality — reliance on

backups

alignment function (Ariane 4) obsolete in
Ariane 5

consequences of reuse not sufficiently explored

exception handling incomplete (decision and

justification obscured from external review)
V & V inadequate

cooperation amongst Ariane 5 partners

inadequate

Types of Reuse

e Knowledge reuse
— artifact reuse

— pattern reuse

e Software reuse
code reuse
inheritance reuse
template reuse
component reuse

framework reuse

Reuse of Knowledge:
Artifact Reuse

e reuse of use cases, standards, design

guidelines, domain specific-knowledge

e Pluses: consistency between projects, reduced
management burden, global comparitors of

quality and knowledge

e Minuses: overheads, constraints on

innovation (coder versus manager)

Reuse of Knowledge:

Patterns

e reuse of publically documented approaches to
solving problems (e.g. class diagrams of

typically 1-5 classes)

“A pattern is a named nugget of insight that
conveys the essence of a proven solution to a
recurring problem within a certain context

amidst competing concerns.”

See links from SEOCI1 lecture log for more

info on patterns

Patterns (cont.)

e Origin of Patterns:

— Ward Cunningham & Kent Beck: pattern
languages for OO novice programmers —
1987

— Jim Coplien: C+4++ programming idioms —
1991

— “Gang of Four” (Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides)

publish Design Patterns: Elements of
Reusable Object-Oriented Software — 1994

e Pluses: long life-span, applicable beyond
current programming languages, applicable

beyond OO?

e Minuses: no immediate solution, no actual

code, knowledge hard to capture/reuse

Types of Software Reuse:
Code Reuse

reuse of (visible) source code — code reuse

versus code salvage

Pluses: reduces written code, reduces

development and maintenance costs

Minuses: can increase coupling, substantial

initial investment

Types of Software Reuse:

Inheritance
e using inheritance to reuse code behavior

e Pluses: takes advantage of existing behavior,

decrease development time and cost

e Minuses: can conflict with component reuse,
can lead to fragile class hierarchy — difficult to

maintain and enhance

10

Types of Software Reuse:
Template Reuse

reuse of common data format/layout (e.g.

document templates, web-page templates)

Pluses: increase consistency and quality,

decrease data entry time

Minuses: needs to be simple, easy to use,

consistent amongst group

11

Further Software Reuse:
Component Based Development

e analogy to electronic circuits: software
“plug-ins”

REAR

_ I.'D cunnﬂcturs

connector

||| Power

PCHISA
slots Memonry
5 uts
/T

FRONT conirem,

Intel ATX Motherboard (launched in 1996)

12

Further Software Reuse:
Component Reuse

reuse of prebuilt, fully encapsulated
“components”; typically self-sufficient and

provide only 1 concept (high cohesion)

Pluses: greater scope for reuse, common
platforms (e.g. JVM) more widespread, 3rd
party component development

Minuses: development time, genericity, need
large libraries to be useful

13

Components: A Definition

“A software component is a unit of
composition with contractually specified
interfaces and explicit context
dependencies only. A software component
can be deployed independently and is

subject to composition by third parties.”

ECOOP ‘96. (European Workshop on

Component-Oriented Programming)

14

Further Software Reuse (2)
Framework Reuse

collection of basic functionality of common

technical or business domain (generic “circuit

boards” for components)

Pluses: supports CBD, can account for 80%
of code

Minuses: substantial complexity, leading to
long learning process; platform specific;
framework compatibility issues leading to

vendor specificity; implements easy 80%

cf. software architecture, product line
architectures, domain component reuse,

domain specific programming, . ..

15

Summary

many kinds of reuse — of both knowledge and

software
each has pluses and minuses

component reuse is a form of software reuse
encapsulation
high cohesion
specified interfaces

explicit context dependencies
Does this work...?

... tune wn next lecture

16

