Validation (3):
Sequence Diagrams

CS3: SEOCI1
Note &

0-0

Sequence Diagrams

These provide a more detailed view of
an interaction than the collaboration
diagram. In many cases the information
represented in the two kinds of diagram is
the same. For simple situations it seems
(to me) that sequence diagrams are easier

to use and comprehend

Simple Sequence Diagram

@

b

discharge(thePatient)

1: discharge

H 1.1: free_bed }

Sequence Diagram Layout

Each object in the interaction is represented
by its named icon along the top of the
diagram.

Under each icon is the lifeline for that object.
Activations are marked by a widened section

in the lifeline. Time progresses downwards.

Directed links between lifelines labelled with
messages represent messages exchanged

between objects.

For a link to be present there must be an
association between the corresponding classes
in the class diagram.

Return links can also be inserted

More Advanced Features

Sending messages to self Means an object has
two activations simultaneously. Represent by
another displaced activation line on top of the
first activation

Suppressing Detail Use packages to suppress
detailed interaction and structure a collection

of objects

Return Values: Often worthwhile to label the
return value because it may be used later in

the interaction

=
©
Pl
o0
Z
-
Q
)
S
Q
=
o
Q
0 p)
N
i
am

1.2: isFree

1. bn:= allocateBed()

Creation and Deletion
Collaboration Diagram: Here the objects in
the collaboration are labelled:

e new for objects created in the
collaboration.

e destroyed for objects destroyed during
the collaboration.

e transient means new and destroyed.

Sequence Diagram: Here we can use the

lifeline.

new objects: have their icon inserted when

they are created.

destroyed objects: have their lifeline

terminated: X marks the spot!

Creation and deletion
Using UML: Figures 9.7 and 9.8

% 1: n:= getName()
:Lecturer {destroyed}
3:destroy()

Ut —

‘ l 2: new DirectorOfStudies (n)

:DirectorOfStudies {new}

;L ecturer

1: n := getName() 1

i

I
|
|
2: new DirectorOf Studies (1)
|
|
|
|
|
|

3:destroy() ; :

Timing

This is most easily dealt with in sequence

diagrams

Label the points of issue and return for a
message. Use these labels in expressing

timing constraints.

This technique also works for message sending
that takes time (so arrows are sloping down).

We could also make metric information in the
diagram contribute to representing timing,

but this is not recommended (why not?)

HIS Sequence Diagram, with Timing

admit(patient)

|
{allocateBed()’ - allocateBed() € 10 msec}
1. bn:=alocateBed()

{C - A <100 msec}

—

2: createRecord(bn)

]

How do interaction diagrams help?

Check use cases: This is the main focus of

these lectures

Check class can provide an operation:
shows how a class realises some operation by

interacting with other objects

Describe design pattern: Parameterising by
class provides a scheme for a generic

interaction (part of Software Architecture).

Describe how to use a component: captures

how some component can interact.

10

Summary

Captures some elements of the dynamics of

systems.
Support a number of different activities.

Describe interaction in some detail, including

timing.

Detail can be hidden using packages.

11

Annotated Example Collaboration

Diagram

onter Entmwingos | «— O DjECt

¢1:prepareo \

message

‘Order self sequence

i*“[fma” order 1.1.1: hasStack = check { delegation number

lines]: prepare { 1.1.2:[hasStock] rermove

—>
talisker ling : Qrder Line talisker stock: Stockltem | 1.1.2.1:needsReorder =

needToReorder ()

i 113 [hasStock] new i1.1 2.2 [needsRearder] new

:Delivery termn rearder item

12

Annotated Example Sequence
Diagram

an Cx::iiedrnint an Order | an Order Line | | a otock ltem |
i prepare()

|
I
e |
I

hasStock =
check()

/'! * prepare()
/ Message
Object \;Q/
[hasStock] ™

|
|
|
| Condition

fteration

remave(] | needsReorder ;=

— | needsToReorder()
¢« self
delegation

[needsReorder] new

—

a Reorder
ltern

[hasStock] new

a Delivary
ltern

W deletion

|
|
. |
creation !

13

Fragment of sequence diagram with

conditional behaviour and branching

lifeline
Using UML: Figure 10.2

7.1:[i = 0] foo()

7.2:[i = 1] bar() =U U

14

Asynchronous message passing in a

sequence diagram
Using UML: Figure 10.6

chooseM odules(m1,...m6)

|
confirmChoi ce(ml,...,m6,se|f)

15

