
Software Engineering with Objects and
Components

Perdita Stevens

School of Informatics
University of Edinburgh



Plan

I What’s this course about?

I How will the course run?

I What are you supposed to know already?



What’s this course about?

   

Design and testing

Programming

Process and
architecture

We assume you can program in Java, given a design.

Aim: after this course, if you understand some requirements you’ll
be able to develop a sane design to satisfy them.

This course goes well with: Software Testing; Software
Architecture, Process and Management.



Elephant trap

At university, and in most summer jobs, you see small software
systems and work with them over short timeframes.

In that context, hacking works OK.

But it does not work at scale!
I will try to help you to understand why the techniques we learn in
this course are worthwhile, but if you evaluate them against short
small experiences, you may not get it.

Try to remember that real-world software systems can be many
millions of LOC, many hundreds of person-years of effort, spread
over many years, very complex.



Elephant trap

At university, and in most summer jobs, you see small software
systems and work with them over short timeframes.

In that context, hacking works OK.

But it does not work at scale!
I will try to help you to understand why the techniques we learn in
this course are worthwhile, but if you evaluate them against short
small experiences, you may not get it.

Try to remember that real-world software systems can be many
millions of LOC, many hundreds of person-years of effort, spread
over many years, very complex.



Elephant trap

At university, and in most summer jobs, you see small software
systems and work with them over short timeframes.

In that context, hacking works OK.

But it does not work at scale!

I will try to help you to understand why the techniques we learn in
this course are worthwhile, but if you evaluate them against short
small experiences, you may not get it.

Try to remember that real-world software systems can be many
millions of LOC, many hundreds of person-years of effort, spread
over many years, very complex.



Elephant trap

At university, and in most summer jobs, you see small software
systems and work with them over short timeframes.

In that context, hacking works OK.

But it does not work at scale!
I will try to help you to understand why the techniques we learn in
this course are worthwhile, but if you evaluate them against short
small experiences, you may not get it.

Try to remember that real-world software systems can be many
millions of LOC, many hundreds of person-years of effort, spread
over many years, very complex.



Method

Learning to design well is hard.

Teaching someone to design well is impossible.

But we can teach, e.g.

I the vocabulary of design criteria: what makes a design good?

I how to model designs so that they can be discussed

I how to learn from others’ knowledge e.g. recorded as patterns.

See topic diagram (on schedule page).



Method

Learning to design well is hard.

Teaching someone to design well is impossible.

But we can teach, e.g.

I the vocabulary of design criteria: what makes a design good?

I how to model designs so that they can be discussed

I how to learn from others’ knowledge e.g. recorded as patterns.

See topic diagram (on schedule page).



Method

Learning to design well is hard.

Teaching someone to design well is impossible.

But we can teach, e.g.

I the vocabulary of design criteria: what makes a design good?

I how to model designs so that they can be discussed

I how to learn from others’ knowledge e.g. recorded as patterns.

See topic diagram (on schedule page).



How will the course run?

No for-credit coursework but this must not mean no work!

Some “flipping”: I will often ask you to read/watch videos
teaching you basic information outside the timetabled slots, and
will then use the timetabled slots to go through examples and let
you ask questions.

Tutorial-style exercises from Week 2 onwards...

Piazza forum for questions and discussion.



Recommended book

Second-hand copies are fine, but make sure they’re second edition
(for UML2).



Beyond exam success

80% of success is showing up.

80% of becoming a good software designer is caring and thinking
about software design.

From now on, every time you read or write code, ask yourself: why
is it designed this way? Could it be improved? How?



What are you supposed to know already?

1. How to program competently in Java (Inf1-OP) – including
understanding basic OO concepts.

2. What software engineering involves (Inf2C-SE) – including
basic use of UML.

ASAP: please visit the course web page, join the Piazza class, and
fill in the preassessment form.


