Conceptual modelling

Perdita Stevens

School of Informatics
University of Edinburgh

Plan

» What's a conceptual class model?
» When and why do conceptual class modelling?
» How to do it?

What is a conceptual class model?

Aka domain model — some authors mean slightly different things
by these two terms, but they are essentially the same thing.

A model that records the key domain concepts and their
relationships in the domain.

Or: the main things your users talk about, and how they know
they are connected.

Does not record things that reflect only this system's requirements
= robust to changing requirements.

Reference for the vocabulary you'll use.

Remember the waterfall model?

That strawperson process that nobody actually uses,

because you CAN'T completely settle the requirements before
doing anything else?

It went: requirements, analysis, design....

“Software analysis” now old-fashioned term, but this is where
conceptual class modelling fits.

Make sense of the world in which the requirements fit, in order to
design a system.

Artefacts to end up with (eventually)

1. Complete set of use case descriptions, summarised in a use
case diagram.
Each use case description describes, step by step, the required
interaction between the actors and the system.
It describes both the usual (“sunny day”) scenarios, and any
alternative scenarios (e.g., what should happen when things
go wrong).

2. A conceptual class model that forms the basis of the system
design.
The classes in the model must have appropriate attributes,
associations and operations (this is the hard part!)

Which comes first?

The use cases, or the conceptual class model?

Really both:

» need some idea of requirements, i.e. actors and use case
names, to get started,;

» key domain concepts emerge as you learn details of use cases;

» it's very helpful to keep the terminology of the use case
descriptions and the conceptual class model consistent;

» so refine them together, until both are solid and consistent.

Reminder: noun identification

In Inf2C-SE you met the idea of identifying candidate classes by
underlining noun phrases in a system description, then eliminating
things that weren't classes.

This is still the key idea; here we'll refine it.

ICONIX process

Students often have trouble with building a conceptual class
model, especially with going beyond class names to allocate data
and behaviour to classes.

I'm going to use parts of the ICONIX process described in Doug
Rosenberg and Matt Stephens’ book Use case driven object
modeling with UML, because | think it does a good job of giving
concrete things to do beyond “underline the nouns and then work
it out”.

It's not a standard, and | will change/criticise some details.

Diagrams taken from http://iconixprocess.com which |
encourage you to visit; Top 10 quoted from the book.

http://iconixprocess.com

ICONIX process roadmap

See

http://iconixprocess.files.wordpress.com/2007/01/
iconixprocessroadmap-1g.png

(I failed to get it legibly into the PDF)

http://iconixprocess.files.wordpress.com/2007/01/iconixprocessroadmap-lg.png
http://iconixprocess.files.wordpress.com/2007/01/iconixprocessroadmap-lg.png

Example domain model: ware aggregation overuse!

Book
Review

Editorial
Review

PN

Reader
Review

Book
Rating

/ G\"
d \'\

Category

Line ltem

Price
‘u
1
‘ll\\.
‘.\ Master
| Book
\'\ Catalog
b: /_7
Book

Catalog

R&S's “Top 10 Tips for domain modelling”

10. Focus on real world (problem domain) objects.

9. Use generalization (is-a) ??and aggregation (has-a)?? relationships to
show how the objects relate to each other.

8. Limit your initial domain modeling efforts to a couple of hours.
7. Organize your classes around key abstractions in the problem domain.
6. Don’t mistake your domain model for a data model.

5. Don't confuse an object (which represents a single instance) with a
database table (which contains a collection of things).

4. Use the domain model as a project glossary.

3. Do your initial domain model before you write your use cases, to avoid
name ambiguity.

2. Don't expect your final class diagrams to precisely match your domain
model, but there should be some resemblance between them.

1. Don't put screens and other GUI-specific classes on your domain
model.

Milestone 1: Requirements Review

Perform robustness
analysis:

For each use case . . .

Disambiguate the
first-draft use case text

Identify a first cut of
objects that
accomplish each
scenario

Update your domain
model as you discover
new objects and
attributes

Finish updating the
analysis-level class
diagram

Milestone 2: Preliminary Design Review

Robustness analysis

is a technique (specific to the ICONIX process) that systematises
the essential process of making the use case text and the
conceptual class diagram consistent, and moving the conceptual
class diagram on to a design class diagram.

For each use case,
build a robustness diagram*

revising the use case text and class model as necessary.

* not part of UML

“A robustness diagram is an object picture of a use case”

It contains:

1. boundary objects (e.g., @

screens) [N]
2. entity objects (instances of Q
your conceptual classes) [N]

3. controllers (typically

messages in the end) [V] @

You draw the use case by connecting these with no two Ns
adjacent. One use case sentence at a time.

boundary and entity objects «<— nouns [N]

controllers «— verbs [V]

Miniature example |

From the student detail page, the lecturer clicks on the
¢¢“Add courses’’ button and the system displays the list of
courses. The lecturer selects the name of a course and
presses the ‘‘Register’’ button. The system registers the
student for the course.

% 7@& Q/Qe list

lecturer student detail display
- @ @
_ourse |

student ourse list page
regist
conﬁrmatmn@ @ select course
page display registe |

course

Miniature example Il

From the student detail page, the lecturer clicks on
the ‘‘Add courses’’ button and the system displays
the list of courses. The lecturer selects the name
of a course and presses the ‘‘Register’’ button. If
the student satisfies the course’s prerequisites and
the course is not full then the system registers the
student for the course and displays a success
message. Otherwise it displays an explanation.

Over to you...

Things to note

Robustness diagrams are informal and not part of UML.

Don't worry about the detail: they are just one way to get to:

» clear, unambiguous use case descriptions
» a sane, complete-enough conceptual class diagram
> a list of screens/web pages needed

> beginning design of functionality.

On to sequence diagrams

In the ICONIX approach behaviour (controllers) is initially separate
from entity objects, i.e. it tends to put data first, before behaviour.

After robustness analysis we'll know (mostly) what data there is,
where it is, what's connected to what;

and we'll know what behaviour there is;
but not, yet, which class is responsible for each behaviour.
Typically a controller becomes a method — but of which object?

(Complex controllers may become controller objects... this depends
partly on your technical architecture/platform.)

Informal sequence diagrams in ICONIX

(on board)

On to real UML (if required)

At this stage we have domain classes with both data and
behaviour.

Detailed design requires choices about technical
architecture/platform, e.g., what Java Ul/persistence/etc.
frameworks to use; some classes and methods are dictated by them.

Eventually can draw real UML sequence diagrams that relate
precisely to an implementation.

Ways to use sequence diagrams

1. To show example behaviour: what happens in some particular
situation (typical? problematic? under discussion?)

2. To show complete behaviour, i.e. all the traces that can result
from some starting configuration, e.g. the whole of a use case
or method implementation.

1) much more useful: pseudocode usually easier than diagram for
2)!

Be clear which it is in each case and if it's an example, say exactly
what the assumptions are (“This is what happens if a lecturer tries
to register a student for a course that is full").

Alternatively: CRC cards

CRC cards are another way of getting from an initial understanding
of the domain plus an initial understanding of the requirements to
solid class model with data and behaviour.

More behaviour/responsibility-oriented than ICONIX.
Tends to abstract away GUI screens/pages entirely.

Which approach you prefer is really a matter of taste.

CRC cards

Class, Responsibilities, Collaborations

Originally introduced by Kent Beck and Ward Cunningham as an
aid to getting non-OO programmers (in Tektronix) to “think
objects”.

Also useful for validating the chosen set of classes (or class model)
against the required behaviour (or use case model).

CRC cards are an aid to clear thought, not a formal part of the
design process — though UML does permit you to record the
information from them in the class model, if you wish.

Examples

LibraryMember

Responsibilities

Collaborators

Know what copies are currently borrowed
Meet requests to borrow and return copies

Copy

Copy

Responsibilities

Collaborators

Know what Book this is a copy of

Inform corresponding Book when borrowed /returned

Book

C, Rand C

Class: a well chosen name capturing the essence of the class

Responsibility: what services is this class supposed to provide?
(Perhaps at a more abstract level than operations; check for
coherence and cohesion.)

Collaborators: what services does this class need in order to fulfil
its responsibilities? (Again, at a more abstract level than message
passing: may leave protocol undecided, but check for feasibility
and coupling.)

How to use CRC cards (1)

No oA~ b

Need a requirements document, or equivalent knowledge,
before you start

Group of 5-6 people, including domain expert(s

Work on a “reasonable size” part of the problem (subsystem?)
Brainstorm possible classes

Discuss and filter to likely set of candidates

Share the classes between the people

Each person writes a card for the class(es) they've been
assigned: name on the front, short precise description on the
back

Read out descriptions to make sure everyone understands

9. Add the totally obvious responsibilities and attributes, only

10.

Start playing scenarios...

How to use CRC cards (2)

Designate a scribe (optional, but usually advisable)

Pick a scenario. It can be end-to-end or an "“inside” behaviour —
must involve some collaboration!

Make it really specific. E.g. consider what happens when “Perdita
Stevens, who has no outstanding fines and nothing else on loan,
returns Using CRC Cards by Nancy Wilkinson™.

Decide where does the initial request comes in. Does that class
have an appropriate responsibility? If not, add one. Owner holds
up that card.

What help does this object need to carry out that responsibility?
Check or add collaborator.

Does the collaborating class have an appropriate responsibility?

Points to note

When there's a choice, consider trying it both ways.
Expect to make mistakes and need to change things.

Keep it simple.

From CRC cards to sequence diagrams

Straightforward: a CRC card scenarios can be recorded directly in
a sequence diagram and the logic of the game takes care of the
message direction and causality.

Be careful if more than one object of the same class is involved.

Refinements of CRC card use

Some people like to use more than the basic C, R, C, e.g. showing:

» sub- and super-classes under the class's name;
» emerging attributes and other parts on the back of the card;

» a concise definition of the concept represented by the class on
the back of the card.

Yes, there are computer-based CRC card tools. But in fact there's
value in using the physical cards.

Summary

We've seen — in theory! — how to develop a conceptual class model
and do early design.

Next: state and activity diagrams.

