
Tutorial: OCL

Purpose

Let you practise reading and writing OCL constraints.
Here are a couple more useful OCL operations on collections that were not explained in the

reading or slides. (There are more: if you want full details, see section 11.7 of the OCL spec.)
Suppose c is a Collection of elements of type T, and t : T. Then we can write:

• c->includes(t)

a Boolean expression that will be true iff the element t is equal to an element of the collection
(exercise: write this in terms of exists instead: yet another example of the non-parsimony
of the UML/OCL language!)

• c->including(t)

an expression that evaluates to a collection which is the same as c except that c has been
added to the collection. (If c is a sequence, t is added as the last element of the new
collection; if it is a bag or a set, the obvious thing happens.)

These questions refer to the following diagram extracted from the OCL specification.

1 Question 1

Translate into English:

1



1. In the context of a Person:

isMarried implies age > 15

2. context Company inv:
numberOfEmployees = employee->size()

3. context Person::income(d:Date) : Integer
pre: d.laterThan(self.birthDate)
post: if age < 18

then result < 100
else result < 200

endif

4. In the context of bigBank : Bank:

bigBank.customer -> collect(p : Person | p.managedcompanies)
-> asSet() -> size() >= 3

What is the difference between this and

bigBank.customer -> collect(p : Person | p.managedcompanies)
-> size() >= 3

?

2 Question 2

Translate into OCL:

1. The length of a person’s first name is always less than 20 characters, and so is the length of
their last name.

2. Anyone who manages a company is an employee of that company. (You could write this in
context Person – making it an invariant of Person – or in context Company – making it an
invariant of Company. Try it both ways.)

3. Every company has a male employee.

4. It is a class invariant of Person that nobody can have more than 5 bank accounts.

5. Nobody can have two employments with companies that have identical names.

3 Extension exercises

for if you have time now, or for revision later.
Look at the UML Superstructure document, 11-08-06. You will see that most of it is organised

by giving a class diagram (in which the classes are actually metaclasses, i.e. they represent concepts
in the domain “modelling software systems”, e.g., Association, Property, Class, Generalization
etc.), and then, for each (meta)class, giving explanations of its meaning, attributes, associations
etc. - and usually, some contraints in OCL. For example, you’ll find the constraints for class
Association on p53 of the PDF (p37 in the document’s own numbering) and to interpret them
you’ll need to look at the diagram containing (meta)class Association which is Fig.7.12 on p45 of
the PDF (p29 in the document’s numbering).

Until you are bored/out of time:

2



1. Pick an OCL constraint from the document, find the diagram that gives its context, and
check that you understand exactly what the OCL means and why it means it. Can you
understand why this constraint is placed on this metaclass? Does the English version of the
constraint capture precisely what the constraint means, or is it ambiguous?

2. Pick a section of the document that contains OCL constraints, preferably relating to one of
the UML concepts that you know something about (e.g. Pseudostate on document page 585,
but there are lots of other possibilities). Print out the relevant page(s) from the document
but do not look at the OCL yet. Cover up the constraints section and gradually reveal so that
you see the English explanation of a constraint but not the OCL. Consulting the relevant
diagram which you’ll typically find a few pages back in the document, try to write an OCL
constraint that means what the English says. Compare what you write with what’s in the
UML spec.

Do not be surprised if in this process you find either

• a mistake in the OCL which is in the UML spec – most of it was written without tool support,
and a few years ago there was a paper in the MODELS conference that systematically looked
for mistakes using a recently developed OCL tool, and found many;

• a place where I have (very likely) severely simplified the version of UML that I taught in
this course, or (less likely I hope) told you something that isn’t strictly true according to the
spec.

In either case, if you want my comments on what you’ve found, I’ll be happy to give them: post
on the Forum or email me.

3


