
Tutorial: APIs

Purpose

Let you practise designing and criticising APIs. (I think this one may be quite hard. It would be
helpful if you let me know, maybe on the questionnaire at the end of term, whether you find it
refreshingly non-trivial or hopelessly confusing... We will be back to more straightforward tutorial
work next week.)

Exercise

NB you need to have watched the Bloch lecture before you proceed.

1. Consider again the Party class of the other tutorials (Week 5 for example). Write down its
API in the current state. What do you think of it? Is anything missing? Can you make any
improvements?

2. Recall what you know about Java applets (the java.applet.Applet class). (If that’s not much,
do this with the Getting Started with Applets tutorial http://docs.oracle.com/javase/
tutorial/deployment/applet/getStarted.html at hand.) Represent the most important
methods on a UML protocol state machine diagram.

3. Imagine you have been asked to design a class Date with the headline specification “The
class Date represents a specific instant in time, with millisecond precision.” Do you see
any problem with this headline? Even if you do, attempt to design an API for this class.
Note that a major decision you will need to take is: should a Date object be mutable or
immutable? (What difference does this make to your API?)

Compare your draft with the actual content of the JDK7 java.util.Date class, see http:
//docs.oracle.com/javase/7/docs/api/java/util/Date.html. Look particularly at the
Deprecated methods and compare them with their suggested replacements. (A method is
marked Deprecated if the designers now think they can offer a better alternative to using
it; it is not immediately removed, in order to avoid breaking client code that uses it, but
the suggestion is that new code should not use it, and that eventually it may be removed.)
Can you guess at why the original methods have been deprecated and why the replacement
mechanisms are considered better?

Now read some of the criticism on the web of the java.util.Date API design, for example
here: http://www.jroller.com/cpurdy/entry/the_seven_habits_of_highly. Note that
a rewritten version is expected in Java 8, see e.g. http://www.infoq.com/news/2012/09/
jsr310-java8 !

Extension exercises

1. Imagine you are designing a class to represent a File. What functionality should it have?
Without consulting any File classes you may have used, draft an API for this class.

1



2. Now compare your API with the one in the JDK7 listed here: http://docs.oracle.com/
javase/7/docs/api/. You will probably find that it provides capabilities you didn’t think
of, but focus first on how it provides the capabilities you did think of. Are there any
interesting differences? Which is better?

3. Follow the link to the java.nio.file package and study its design (it’s new in JDK7).
Here’s a blog post about it: http://codingjunkie.net/java7-file-revolution/; you
might want to follow links e.g. to the com.google.common.io package.

2


