
Tutorial: basic class and sequence diagrams

September 23, 2012

Purpose

Check that you know how to read and write basic class and sequence diagrams. In principle, you
do from Inf2C-SE!

Exercises

Everyone should become able to do these, and should have a go before the tutorial. If you have
trouble ask your tutor.

1. Draw a class diagram that shows a class Party, a class Food, a class Entertainer and
a class Venue. Each of Food, Entertainer and Venue should have an integer attribute
cost and getter and setter methods for it. Party should have an operation with selector
getTotalCost. (What should the signatures of these operations be?) For now, do not show
associations between the classes.

2. It is decided that the getTotalCost operation should be implemented by the object of class
Party asking an object of each class Food, Entertainer, Venue for the value of its cost
attribute, summing them and returning the result. Draw a sequence diagram that shows
this behaviour being invoked by an actor.

3. Since objects of our classes communicate, there should be associations among the classes in
the class diagram. Add suitable associations. Show navigability and multiplicities.

4. Next consider a modification of the design in which, instead of containing a fixed cost, a
Venue object will calculate its cost on request, using information about the timing of the
event. Suppose that a Party can report its date, start time and duration. Consider two
possible designs:

(a) the relevant information is passed to Venue along with the request to calculate a cost;
or

(b) the Venue object will take a no-argument request for a cost as usual, but then will ask
for the extra information it needs.

Make versions of, or annotate, your diagrams to show the difference between the two options.
Take special care with the second. What are the pros and cons of each design?

Less simple UML

Do these if you have time once you are confident with the basic exercises. If you don’t do them
now, do them later for revision.

1



1. Many interactions involve loops. Modify the Party example so that instead of a party
involving a single entertainer it involves a collection of entertainers, whose costs have to be
summed. First, think about how you could represent this in a sequence diagram and sketch
possibilities. Then, look up sequence fragments in UML sequence diagrams and see how
UML2 does represent this situation.

2. Consider a situation involving a callback. Show on a sequence diagram:

(a) an object a:A sends a message registerObserver(a) to b:B, i.e. with a reference to
itself as argument (assume b:B replies without sending any messages itself);

(b) an actor sending newValue(17) to b;

(c) b, as part of its response, sending message notifyObservers() to itself;

(d) b, as part of its response to its own message notifyObservers(), sending message
notify() to a;

(e) a, as part of its response to notify(), sending message getNewValue() to b, which
replies with 17.

Put in nested activations and all return arrows, and check that what you’ve written makes
sense (everything, except the initial message and the actor’s message, should be caused by
something).

This is what happens in the Observer pattern, which we’ll discuss later. Can you see what
it’s for, designwise?

2


