
A few important patterns

Perdita Stevens

School of Informatics
University of Edinburgh

Plan

I Singleton

I Factory method

I Facade

I ...more if time, but only those patterns mentioned in lecture
slides or tutorial sheets are examinable...

Singleton

Common problem: In OO systems a class often has only one
object. Sometimes, it’s important to ensure that it only has one
object.

E.g., it’s maintaining an important datum that needs to be held
consistently, in only one version; or it’s connecting to an external
system with which your system should be having only one
“conversation”.

Solution: Singleton, one of the simplest patterns, ensures this.
Key element: make the constructor private so that you can control
how objects are created.

Singleton: class diagram

Note the notation (underlining) for the class-level (static, in Java)
attribute and operation. These are essential, since the constructor
is private!

Image: Wikipedia



Notes on Singleton

I Advantage: lazy instantiation possible – the instance need not
actually be created unless or until it is needed.

I Drawback: introduces global state.

I Drawback: great care is needed in multi-threaded applications.

I Advantage: often useful in conjunction with other patterns,
e.g. Factory Method, Facade (coming up).

I Use sparingly

Factory Method

Common problem: your class needs to own an object and use its
services. The services you need are described by a fairly abstract
class/interface (Product, say) which has various subclasses and/or
a complicated creation process, that shouldn’t be your class’s
business.

Only one line of your code depends on which kind of Product
you’re going to have and how it’s going to be built:

Product p = new ConcreteProduct(...);

Solution: Instead, get something else to build and give you a
Product so that all your code is written purely in terms of
Product.

In effect, your class says “Give me an appropriate Product” and
declines to concern itself with exactly what is returned or how it is
created.

Factory Method: class diagram

Image: Wikipedia

Notes on Factory Method
I How does your class contact the object that provides the

factory method? Various ways: it may be a Singleton; or there
may be some coordinator object that you can ask for a
reference to the creator object. NB the creator you are given
may be a VerySpecialCreator object, creating
VerySpecialProduct objects – your code doesn’t care.
(Provided LSP is satisfied!)

I Common problem of unit testing, esp. when the code wasn’t
designed for testability: object needs to create something
expensive or dangerous before it works. How do you test it
without creating the expensive or dangerous thing? Make the
creation into a factory method in this object. Then create
subclass that overrides the factory method with dummy
creation, and test that.
(If you were designing for testability, you’d probably use
Dependency Injection, see later.)

I The Product is often given a private constructor so that it
can only be created by the factory method.



Facade

Common problem: you have roughly separated your classes into
two packages, but there are several dependencies of classes in
package A on classes in package B. It becomes hard to work out
what the effect of a change in package B will be, and developers
who want to use the services of package B have to understand the
detail of what’s inside it.

Solution: you create a Facade class whose job it is to present a
single, simple interface to package B. All requests for services from
anything in package B are sent to an object of the Facade class.
This object may just forward the request to the right object, or it
may do more complex things.

Facade: class diagram

Image: http://best-practice-software-engineering.ifs.tuwien.ac.

at/patterns/facade.html

Notes on Facade

I Advantage: very useful way to control dependencies

I Advantage: hides a multitude of sins. Lets you redesign a
subsystem behind a facade without impacting what is outside.

I Disadvantage: incurs the cost of extra method calls (usually
not a problem).

I The Facade may be a Singleton, but this isn’t always
necessary.

Creational patterns

I Abstract Factory

I Builder

I Factory Method

I Prototype

I Singleton

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/facade.html


Structural patterns

I Adapter

I Bridge

I Composite

I Decorator

I Facade

I Flyweight

I Proxy

Behavioral patterns

I Chain of responsibility

I Command

I Interpreter

I Iterator

I Mediator

I Memento

I Observer

I State

I Strategy

I Template method

I Visitor


