
Software design and modelling

Nigel Goddard

School of Informatics
University of Edinburgh



What is design?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.

What is good design?

2 / 19



What is design?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.

What is good design?

3 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)

I It is verifiable: that is, it is practical to check that it meets
the requirements

I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

4 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements

I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

5 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors

I It is maintainable: that is, it will be possible to adapt it to
meet future requirements

I It makes appropriate use of existing technology, e.g. reusable
components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

6 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements

I It makes appropriate use of existing technology, e.g. reusable
components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

7 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

8 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

9 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

10 / 19



(Some) criteria for a good design
I It can meet the known requirements (functional and

non-functional)
I It is verifiable: that is, it is practical to check that it meets

the requirements
I It is straightforward to explain to implementors
I It is maintainable: that is, it will be possible to adapt it to

meet future requirements
I It makes appropriate use of existing technology, e.g. reusable

components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.

11 / 19



A quotation from Donald Schön

Designers put things together and bring new things into being,
dealing in the process with many variables and constraints, some
initially known and some discovered through designing. Almost
always, designers’ moves have consequences other than those
intended for them. Designers juggle variables, reconcile conflicting
values, and maneuver around constraints – a process in which,
although some design products may be superior to others, there
are no unique right answers.

Donald A. Schön
Educating the Reflective Practitioner

Jossey-Bass, San Francisco, 1987.

12 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

13 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

14 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

15 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

16 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

17 / 19



Levels of design

Design occurs at different levels, e.g. someone must decide:

I what programming languages will your system use?

I how is your system split up into subsystems? (high-level, or
architectural, design)

I what are the classes in your system? (low-level, or detailed,
design)

I what are the responsibilities of each bit? (both levels)

I what are the interfaces? (both levels)

I what messages are exchanged, in what order? (both levels)

18 / 19



What is architecture?

Many things to many people.

The way that components work together

More precisely, an architectural decision is a decision which affects
how components work together.

Includes decisions about the high level structure of the system –
what you probably first think of as “architecture”.

Pervasive, hence hard to change. Indeed an alternative definition is
“what stays the same” as the system develops, and between
related systems (Stuart Anderson).

19 / 19



What is architecture?

Many things to many people.

The way that components work together

More precisely, an architectural decision is a decision which affects
how components work together.

Includes decisions about the high level structure of the system –
what you probably first think of as “architecture”.

Pervasive, hence hard to change. Indeed an alternative definition is
“what stays the same” as the system develops, and between
related systems (Stuart Anderson).

20 / 19



Classic structural view

Architecture specifies:

I what are the components?
Looked at another way, where shall we put the encapsulation
barriers? Which decisions do we want to hide inside
components, so that we can change them without affecting
the rest of the system?

I what are the connectors?
Looked at another way, how and what do the components
really need to communicate? E.g., what should be in the
interfaces, or what protocol should be used?

The component and connector view of architecture is due to Mary
Shaw and David Garlan – spawned specialist architectural
description languages, and influenced UML2.0, but beyond scope
of this course.

21 / 19



Classic structural view

Architecture specifies:

I what are the components?
Looked at another way, where shall we put the encapsulation
barriers? Which decisions do we want to hide inside
components, so that we can change them without affecting
the rest of the system?

I what are the connectors?
Looked at another way, how and what do the components
really need to communicate? E.g., what should be in the
interfaces, or what protocol should be used?

The component and connector view of architecture is due to Mary
Shaw and David Garlan – spawned specialist architectural
description languages, and influenced UML2.0, but beyond scope
of this course.

22 / 19



Classic structural view

Architecture specifies:

I what are the components?
Looked at another way, where shall we put the encapsulation
barriers? Which decisions do we want to hide inside
components, so that we can change them without affecting
the rest of the system?

I what are the connectors?
Looked at another way, how and what do the components
really need to communicate? E.g., what should be in the
interfaces, or what protocol should be used?

The component and connector view of architecture is due to Mary
Shaw and David Garlan – spawned specialist architectural
description languages, and influenced UML2.0, but beyond scope
of this course.

23 / 19



More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I what conventions do components have about error handling?

I what framework does the product use?

Clean architecture helps get reuse of components.

By some definitions parts of the architecture can be components –
frameworks, product-line architectures etc.

24 / 19



More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I what conventions do components have about error handling?

I what framework does the product use?

Clean architecture helps get reuse of components.

By some definitions parts of the architecture can be components –
frameworks, product-line architectures etc.

25 / 19



More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I what conventions do components have about error handling?

I what framework does the product use?

Clean architecture helps get reuse of components.

By some definitions parts of the architecture can be components –
frameworks, product-line architectures etc.

26 / 19



More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I what conventions do components have about error handling?

I what framework does the product use?

Clean architecture helps get reuse of components.

By some definitions parts of the architecture can be components –
frameworks, product-line architectures etc.

27 / 19



More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I what conventions do components have about error handling?

I what framework does the product use?

Clean architecture helps get reuse of components.

By some definitions parts of the architecture can be components –
frameworks, product-line architectures etc.

28 / 19



Detailed design

happens inside a subsystem or component.

E.g., maybe the system architecture has been settled by a small
team, written down, and reviewed. Now you are in charge of the
detailed design of one subsystem. You know you have to write in
Java, you know what external interfaces you have to work to and
what you have to provide. Your job is to choose classes and their
behaviour that will do that.

Idea: even if you’re part of a huge project, your task is now no
more difficult than if you were designing a small system.

(But: your interfaces are artificial, and this may make them harder
to understand/negotiate/adhere to.)

29 / 19



Detailed design

happens inside a subsystem or component.

E.g., maybe the system architecture has been settled by a small
team, written down, and reviewed. Now you are in charge of the
detailed design of one subsystem. You know you have to write in
Java, you know what external interfaces you have to work to and
what you have to provide. Your job is to choose classes and their
behaviour that will do that.

Idea: even if you’re part of a huge project, your task is now no
more difficult than if you were designing a small system.

(But: your interfaces are artificial, and this may make them harder
to understand/negotiate/adhere to.)

30 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

31 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

32 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

33 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

34 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

35 / 19



Which of these two designs is better?

Clickers out!

A) public class AddressBook {
private LinkedList<Address> theAddresses;
public void add (Address a) {theAddresses.add(a);}
// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {
// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know

Which?

36 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

37 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

38 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

39 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

40 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

41 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

42 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

43 / 19



Design principles 1: Coherence

Coherence of a component (e.g., class, package) is:

A how similar the parts of a component are

B the degree to which a component reflects a functional
abstraction

C how clear the organisation of a component is

D the density of interaction between parts of a component

Which?

A better design has:

A higher coherence

B lower coherence

Which?

44 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

45 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

46 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

47 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

48 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

49 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

50 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

51 / 19



Design principles 2: Coupling

Coupling between two components is:

A how similar the two components are

B the degree of interaction between the components

C how dependent one component is on the implementation of the
other component

D the extent to which one component depends on the other

Which?

A better design has:

A higher coupling

B lower coupling

Which?

52 / 19



Design principles 3

So... if you had to pick two design principles, they’d be:

I maximize coherence

I minimize coupling

Why?

(human and compiler) understandability, maintainability

53 / 19



Design principles 3

So... if you had to pick two design principles, they’d be:

I maximize coherence

I minimize coupling

Why?

(human and compiler) understandability, maintainability

54 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

55 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

56 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

57 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

58 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

59 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

60 / 19



Design principles 4 (from GSWEBOKCh3)
I abstraction - procedural, data

“the process of forgetting information so that things that are
different can be treated as if they were the same”

I decomposition, modularisation
splitting up, “usually with the goal of placing different
functionalities or responsibilities in different components”

I encapsulation
“grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible”

I separation of interface and implementation “specifying a
public interface, known to the clients, separate from the
details of how the component is realized.”

I sufficiency, completeness, primitivity
“all the important characteristics of an abstraction, and
nothing more.”

Note crucial role of interfaces. This whole family of principles is
about fitting very complex software into limited human brains.

61 / 19



Modelling

Let’s say: a model is any precise representation of some of the
information needed to solve a problem using a computer.

E.g. a model in UML, the Unified Modeling Language. Use case
diagrams are part of UML. A UML model

I is represented by a set of diagrams;

I but has a structured representation too (stored as XML);

I must obey the rules of the language;

I has a (fairly) precise meaning;

I can be used informally, e.g. for talking round a whiteboard;

I and, increasingly, for generating, and synchronising with,
code, textual documentation etc.

62 / 19



Why design? Why model?

Fundamentally:

Design, so that you’ll be able to build a system that has the
proprties you want.

Model, so that you can design, and communicate your design.

Both can be done in different styles...

63 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

64 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

65 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

66 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

67 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

68 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

69 / 19



Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

You ain’t gonna need it

Do the simplest thing that could possibly work

70 / 19



Reading

Suggested: GSWEBOK2004 Ch3 (see web), for an overview of the
field of software design

Suggested: Stevens Ch3, a simple case study; Somerville Ch14 on
OOD (and nearby chapters, maybe)

Suggested: Browse SEI’s collection of architecture definitions at
http:
//www.sei.cmu.edu/architecture/definitions.html

Suggested: (architecture) Somerville ch 11-13

71 / 19

http://www.sei.cmu.edu/architecture/definitions.html
http://www.sei.cmu.edu/architecture/definitions.html


Quotes of the day

There are two ways of constructing a software design.
One way is to make it so simple that there are obviously
no deficiencies. And the other way is to make it so
complicated that there are no obvious deficiencies.

C.A.R. Hoare

Software architecture is the set of design decisions
which, if made incorrectly, may cause your project to be
cancelled.

Eoin Woods, software architect, co-author of Software Systems
Architecture : Working With Stakeholders Using Viewpoints and
Perspectives

72 / 19


	Design

