
Software Engineering
with Objects and Components

Open Issues and Course Summary

Massimo Felici

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



1

Software Engineering with Objects and
Components

• Software development process
– Lifecycle models and main stages
– Process management
– Testing
– Maintenance and Evolution

• Introduction to UML Diagrams
– Use cases
– Class diagrams
– CRC cards
– Interaction diagrams
– Activity and Statechart diagrams

• Reuse and components

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Open Questions 2

Software Engineering with Objects and
Components

• Is software engineering with objects and components a good way of building
systems?

• Why are we doing this? To build good systems

• What are good systems?

• Why do we need them?

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



3

Why a unified language?
A unified language should be (and UML is?)

• Expressive

• Easy to use

• Unambiguous

• Tool supported

• Widely used

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Software Engineering with Objects and Components 4

Development Processes

• Development process
– Architecture-centric and component-based
– Iteration to control risk
– Risk management is central

• (Unified?) design methodology
– Pros: dependable, assessment, standards
– Cons: constraints, overheads, generality
– Unified modelling language combines pros while avoiding cons

• The unified process
– Inception, Elaboration, Construction, Transition
– There are many other processes (e.g., Spiral, Extreme Programming, etc.)

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



History 5

UML

• 1989-1994 OO “method wars”
• 1994-1995 three Amigos and birth of UML
• Oct 1996 feedback invited on UML 0.9
• Jan 1997 UML 1.0 submitted as RFP (Request for Proposal) to OMG (Object

Management Group)
• Jun 1999 UML 1.3 released
• Sep 2000 (some UML 2.0 RFPs submitted
• Feb 2001 UML 1.4 draft specification released
• UML 1.5;
• Current Version: UML 2.0. adopted in late 2003

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Open Issues 6

UML

• UML semantics

• Tool support

• OCL (Object Constraint Language)

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



What’s new in UML 2.0 7

UML

• Nested Classifiers: In UML, almost every model building block you work
with (classes, objects, components, behaviours such as activities and state
machines, and more) is a classifier. In UML 2.0, you can nest a set of classes
inside the component that manages them, or embed a behavior (such as a
state machine) inside the class or component that implements it.

• Improved Behavioural Modeling: In UML 1.X, the different behavioural
models were independent, but in UML 2.0, they all derive from a fundamental
definition of a behaviour (except for the Use Case, which is subtly different
but still participates in the new organisation).

• Improved relationship between Structural and Behavioural Models: UML
2.0 lets you designate that a behaviour represented by (for example) a State
Machine or Sequence Diagram is the behaviour of a class or a component.

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



8

Requirements Capture

• Users have different potentially conflicting views of the system

• Users usually fail to express requirements clearly – missing information,
superfluous and redundant information, inaccurate information

• Users are poor at imagining what a system will be like

• Identifying all the work needing support by the system is difficult

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



9

Static Structures

• Desirable to build system quickly and cheaply

• Desirable to make system easy to maintain and modify

• Identifying classes: Data driven design, Responsibility driven design, Use case
driven design, Design by contract

• Class diagrams document: classes (attributes, operations) and associations
(multiplicities, generalisations)

• System is some collection of objects in class model

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



10

Validating the Class Model

• CRC Cards: class, responsibility and collaborators

• UML interaction diagrams

• CRC cards and quality: Too many responsibilities implies low cohesion, Too
many collaborators implies high coupling

• CRC cards used to: Validate class model using role play, Record changes,
Identify opportunities to refactor

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



11

Interactions

• Sequence and Communication diagrams – documents how classes realise use
cases, thus, help to validate design

• Other uses: design patterns, component use, packages
• Instance versus generic
• Procedural versus concurrent
• Law of Demeter
• Creation and deletion of objects
• timing

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Other UML Diagrams 12

UML

• Describing object behaviour

– Activity diagrams
– State diagrams

• Implementation diagrams

– Package Diagrams
– Composite Structures
– Component Diagrams
– Deployment Diagrams

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Other Software Engineering Issues 13

Testing

• Testing strategies: top-down versus bottom-up, black-box versus glass-box,
stress testing

• Categories (unit, integration, acceptance)

• Regression testing

• Test plans

• OO and component issues

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Other Software Engineering Issues 14

Reuse and Components

• Type of reuse: Knowledge (artefacts, patterns), software (code, inheritance,
template, component, framework)

• success stories, pitfalls and difficulties with (component) reuse

• Reuse not free and requires management

Massimo Felici Software Engineering with Objects and Components c© 2004–2011



Lecture Notes, Practicals and Resources 15

Software Engineering with Objects and
Components

• Lecture Notes
– 14 Lecture Notes
– Coursework drawn from an Industry Case Study

• Practicals
– Requirements gathering, UML Design and Java Implementation
– Group project
– Different teams in each tutorial group
– Tutorials

• Resources
– References complementing and extending lecture notes
– Main Tools: Eclipse or NetBeans, and UML plugin

Massimo Felici Software Engineering with Objects and Components c© 2004–2011


