Software Engineering
with Objects and Components

Open Issues and Course Summary

Massimo Felici

® School of

informatics

Massimo Felici

Software Engineering with Objects and Components

(©2004-2010



] School of _ ¢
- iInformatics

Software Engineering with Objects and
Components

e Software development process
— Lifecycle models and main stages
— Process management
— Testing
— Maintenance and Evolution
e Introduction to UML Diagrams
— Use cases
— Class diagrams
— CRC cards
— Interaction diagrams
— Activity and Statechart diagrams
e Reuse and components

Massimo Felici Software Engineering with Objects and Components (©2004-2010



] School of _ ¢
s iInformatics

Open Questions

Software Engineering with Objects and
Components

e |s software engineering with objects and components a good way of building
systems?

e Why are we doing this? To build good systems
e What are good systems?

e Why do we need them?

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o School of _ o
= Informatics

Why a unified language?
A unified language should be (and UML is?)

e Expressive

e Easy to use

e Unambiguous
e Tool supported

o Widely used

Massimo Felici Software Engineering with Objects and Components (©2004-2010



] School of _ ¢
- informatics

Software Engineering with Objects and Components

Development Processes

e Development process

— Architecture-centric and component-based

— lteration to control risk

— Risk management is central
e (Unified?) design methodology

— Pros: dependable, assessment, standards

— Cons: constraints, overheads, generality

— Unified modelling language combines pros while avoiding cons
e The unified process

— Inception, Elaboration, Construction, Transition

— There are many other processes (e.g., Spiral, Extreme Programming, etc.)

Massimo Felici Software Engineering with Objects and Components (©2004-2010



® School of _ e
History 5 'nfocr(ﬁ)"oatlcs

UML

1989-1994 OO “method wars"

1994-1995 three Amigos and birth of UML

Oct 1996 feedback invited on UML 0.9

Jan 1997 UML 1.0 submitted as RFP (Request for Proposal) to OMG (Object
Management Group)

Jun 1999 UML 1.3 released

Sep 2000 (some UML 2.0 RFPs submitted

Feb 2001 UML 1.4 draft specification released

UML 1.5;

Current Version: UML 2.0. adopted in late 2003

Massimo Felici Software Engineering with Objects and Components (©2004-2010



® School of _ e
Open lIssues 6 'nformahcs

UML

e UML semantics
e Tool support

e OCL (Object Constraint Language)

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o f School of _ o
What's new in UML 2.0 = informatics

UML

e Nested Classifiers: In UML, almost every model building block you work
with (classes, objects, components, behaviours such as activities and state
machines, and more) is a classifier. In UML 2.0, you can nest a set of classes
inside the component that manages them, or embed a behavior (such as a
state machine) inside the class or component that implements it.

e Improved Behavioural Modeling: In UML 1.X, the different behavioural
models were independent, but in UML 2.0, they all derive from a fundamental
definition of a behaviour (except for the Use Case, which is subtly different
but still participates in the new organisation).

e Improved relationship between Structural and Behavioural Models: UML
2.0 lets you designate that a behaviour represented by (for example) a State
Machine or Sequence Diagram is the behaviour of a class or a component.

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o School of _ o
= iInformatics

Requirements Capture
e Users have different potentially conflicting views of the system

e Users usually fail to express requirements clearly — missing information,
superfluous and redundant information, inaccurate information

e Users are poor at imagining what a system will be like

e |dentifying all the work needing support by the system is difficult

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o School of _ o
5 Informatics

Static Structures
e Desirable to build system quickly and cheaply
e Desirable to make system easy to maintain and modify

e |dentifying classes: Data driven design, Responsibility driven design, Use case
driven design, Design by contract

e Class diagrams document: classes (attributes, operations) and associations
(multiplicities, generalisations)

e System is some collection of objects in class model

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o School of _ o
- informatics

Validating the Class Model

e CRC Cards: class, responsibility and collaborators
e UML interaction diagrams

e CRC cards and quality: Too many responsibilities implies low cohesion, Too
many collaborators implies high coupling

e CRC cards used to: Validate class model using role play, Record changes,
|dentify opportunities to refactor

Massimo Felici Software Engineering with Objects and Components (©2004-2010



] School of _ ¢
- informatics

Interactions

e Sequence and Communication diagrams — documents how classes realise use
cases, thus, help to validate design

Other uses: design patterns, component use, packages

Instance versus generic

Procedural versus concurrent

Law of Demeter

Creation and deletion of objects

timing

Massimo Felici Software Engineering with Objects and Components (©2004-2010



] School of _ ¢
= informatics

Other UML Diagrams

UML

e Describing object behaviour

— Activity diagrams
— State diagrams

e Implementation diagrams

— Package Diagrams

— Composite Structures
— Component Diagrams
— Deployment Diagrams

Massimo Felici Software Engineering with Objects and Components (©2004-2010



e f School of _ e
Other Software Engineering Issues 13 informatics

Testing

e Testing strategies: top-down versus bottom-up, black-box versus glass-box,
stress testing

e Categories (unit, integration, acceptance)
e Regression testing
e Test plans

e OO and component issues

Massimo Felici Software Engineering with Objects and Components (©2004-2010



® f School of _ e
Other Software Engineering Issues 14 informatics

Reuse and Components

e Type of reuse: Knowledge (artefacts, patterns), software (code, inheritance,
template, component, framework)

e success stories, pitfalls and difficulties with (component) reuse

e Reuse not free and requires management

Massimo Felici Software Engineering with Objects and Components (©2004-2010



o School of _ o
= informatics

Lecture Notes, Practicals and Resources

Software Engineering with Objects and
Components

e Lecture Notes
— 14 Lecture Notes
— Industry Presentation and Collaboration
e Practicals
— Requirements gathering, UML Design and Java Implementation
— Group project
— Different teams in each tutorial group
— Tutorials
e Resources
— References complementing and extending lecture notes
— Main Tools: NetBeans and UML plugin

Massimo Felici Software Engineering with Objects and Components (©2004-2010



