
Component Diagrams

Massimo Felici

Massimo Felici Component Diagrams c©2004-2010



Rationale 1

Component Diagrams

• A component is an encapsulated, reusable, and replaceable part of your software

• Reducing and defying coupling between software components

• Reusing existing components

Massimo Felici Component Diagrams c©2004-2010



Slide 1: Component Diagrams

The ability to identify software components (which are encapsulated, reusable and
replaceable) supports development strategies that use, e.g., COTS (Commercial-
Off-The-Shelf) components.

Required Readings

• UML course textbook, Chapter 8 on Component Diagrams



2

Component Diagrams

• Model physical software components and the interfaces between them

• Show the structure of the code itself

• Can be used to hide the specification detail (i.e., information hiding) and focus
on the relationship between components

• Model the structure of software releases; show how components integrate with
current system design

• Model source code and relationships between files

• Specify the files that are compiled into an executable

Massimo Felici Component Diagrams c©2004-2010



Slide 2: Component Diagrams

Components have interfaces and context dependencies (i.e., implementation-
specific shown on diagram; use-context may be described elsewhere, for example,
documentation, use-cases, interaction diagrams, etc.).



3

Component Notation

A Component is a physical piece of a system, such as a compiled object file, piece
of source code, shared library or Enterprise Java Bean (EJB).

Massimo Felici Component Diagrams c©2004-2010



Slide 3: Component Notation

Note that UML 2.0 uses a new notation for a component. Previous UML versions
use the component icon as the main shape.



4

Component Interfaces

Massimo Felici Component Diagrams c©2004-2010



Slide 4: Component Interfaces

• A provided interface of a component is an interface that the component
realises

• A required interface of a component is an interface that the component
needs to function



Slide 4: Component Interfaces

Class interfaces have similar notations (definitions).

• Provided interfaces define “a set of public attributes and operations that must
be provided by the classes that implement a given interface”.

• Required interfaces define “a set of public attributes and operations that are
required by the classes that depend upon a given interface”.

Java Warnings: Note that these definitions of interfaces differ from the Java
definition of interfaces. The Java definition of interfaces does not allow to have
attributes, nor hence state.

Required Readings

• UML course textbook, Chapter 7 on Class Diagram: Other Notations



5

Component Assemblies
Components can be “wired” together to form subsystems

Massimo Felici Component Diagrams c©2004-2010



6

Ports
A port (definition) indicates that the component itself does not provide the
required interfaces (e.g., required or provided). Instead, the component delegates
the interface(s) to an internal class.

Massimo Felici Component Diagrams c©2004-2010



Slide 6: Ports

Component Realisation. A component might implement (realise) the provided
interfaces for the component, or it may delegate that realisation to other classes
that make up that component. The realisation dependency can be shown in three
ways:

1. listing the realisation classes

2. using realisation dependency relationships

3. showing containment graphically.

Ports Forwarding and Filtering. Ports connect to the required and provided
interfaces on the outside of the class. They can also connect to the classes of the
component itself.



7

Component Diagrams

• Component Diagrams can show how subsystems relate and which interfaces
are implemented by which component.

• A Component Diagram shows one or more interfaces and their relationships to
other components.

• A Component Diagram shows the dependencies among software components,
including source code, binary code and executable components.

• Some components exist at compile time, some exist at link time, and some
exist at run time; some exist at more that one time.

Massimo Felici Component Diagrams c©2004-2010



Slide 7: Dependencies

Reside Dependencies. A reside dependency from a component to any UML
element indicates that the component is a client of the element, which is
considered itself a supplier, and that the element resides in the component.

Use Dependencies. A use dependency from a client component to a supplier
component indicates that the client component uses or depends on the
supplier component. A use dependency from a client component to a supplier
components interface indicates that the client component uses or depends on
the interface provided by the supplier component.

Deploy Dependency. A deploy component from a client component to a
supplier node indicates that the client components is deployed on the supplier
node.



8

Component Modelling

1. Find components and dependencies

2. Identify and level subcomponents

3. Clarify and make explicit the interfaces between components

Massimo Felici Component Diagrams c©2004-2010



9

When to use component diagrams

Use component diagrams when you are dividing your system into components
and want to show their interrelationships through interfaces or the breakdown
of components into a lower-level structure.

Massimo Felici Component Diagrams c©2004-2010



10

How to produce component diagrams

• Decide on the purpose of the diagram

• Add components to the diagram, grouping them within other components if
appropriate

• Add other elements to the diagram, such as classes, objects and interfaces

• Add the dependencies between the elements of the diagram

Massimo Felici Component Diagrams c©2004-2010



11

Required Readings

• UML course textbook, Chapter 7 on Class Diagram: Other Notations

• UML course textbook, Chapter 8 on Component Diagrams

Massimo Felici Component Diagrams c©2004-2010



12

Summary

• Component Rationale

• Notation

• Component Diagrams

• Modelling

Massimo Felici Component Diagrams c©2004-2010


