Validation: CRC Cards

Massimo Felici

® School of

informatics

Massimo Felici Validation: CRC Cards (©2004-2010

] f School of _ ¢
What are CRC Cards? T Intformatics

CRC Cards

e CRC: Class-Responsibility-Collaborator

e CRC cards provide the means to validate the class model with the use case
model

e Responsibilities are a way to state the rationale of the system design

e CRC cards support responsibility-based modelling

Massimo Felici Validation: CRC Cards (©2004-2010

Slide 1: CRC Cards

CRC cards allow a useful early check that the anticipated uses of the system can
be supported by the proposed classes. They support a brainstorming technique
that works with scenario walkthroughs to stress-test a design.

Responsibility-based modelling is appropriate for designing software classes as
well as for partitioning a system into subsystems. The underlying assumptions
are:

e People can intuitively make meaningful value judgements about the allocation
of responsibilities

e The central issues surrounding how a system is partitioned can be captured by
asking what the responsibility of each part has toward the whole - Is it really
the responsibility of this object to handle this request? Is it its responsibility
to keep track of all that information?

Slide 1: CRC Cards

Required Readings

e K. Beck, W. Cunningham. A Laboratory for Teaching Object-Oriented

Thinking. In Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA '89), ACM, pp. 1-6.

http://doi.acm.org/10.1145/74877.74879
http://doi.acm.org/10.1145/74877.74879
http://doi.acm.org/10.1145/74877.74879

] School of _ ¢
s informatics

How do they look like?

CRC Cards

CRC Cards explicitly represent multiple objects simultaneously

1. The Name of the class it refers to
2. The Responsibilities of the class
These should be high level, not at the level of individual methods

3. The Collaborators that help discharge a responsibility

3 \?Iass Name

Responsibilities | Collaborators
» LN

Massimo Felici Validation: CRC Cards (©2004-2010

Slide 2: An empty CRC card

Class Name

Responsibilities Collaborators

o School of _ o
= Informatics

Design by Responsibilities

e Responsibility-based Modelling allows

— The identification of the components from which the system is constructed

— The allocation of responsibilities to system components

— The identification of the services (or functionalities) provided by them

— The assessment how components satisfy the requirements as stated by the
use cases

e Types of Responsibilities

— To do something (active responsibilities)
— To provide information (acting as a contact point)

Massimo Felici Validation: CRC Cards (©2004-2010

School of _ e

([]
- informatics

Steps in Responsibility-based Design

1 Identify scenarios of use; bound the scope
of design

2 Role play the scenarios, evaluating
responsibilities

3 Name the required responsibilities to
carry a scenario toward

4 Make sure that each component has
sufficient information and ability to carry
out its responsibility

5 Consider variations of the scenario; check
the stability of the responsibility

6 Evaluate the components

7 Ask the volatility / stability of the
component

8 Create variations

9 Run through the wvariant scenarios
to investigate the stability of the
components and responsibilities

10 Simulate if possible

11 Consolidate the components by level

12 Identify subsystems

13 Identify the different levels

14 Document the design rationale and key
scenarios

15 Decide which scenarios to document

16 List the components being used that
already exist

17 Specify each new component

Massimo Felici

Validation: CRC Cards

(©2004-2010

o School of _ o
= Informatics

Design Activities
1. Preparation: collection and selection of use cases
2. Invention: (incremental) identification of components and responsibilities
3. Evaluation: questions and scenarios stress test the design
4. Consolidation: further assessment of the tested components

5. Documentation: recording identified reasons and scenarios

Massimo Felici Validation: CRC Cards (©2004-2010

o School of _ o
= iInformatics

CRC Cards in Design Development
1. Work using role play — different individuals are different objects
2. Pick a use case to building a scenario to hand simulate

3. Start with the person who has the card with the responsibility to initiate the
use case

4. In discharging a responsibility a card owner may only talk to collaborators for
that responsibility

5. Gaps must be repaid and re-tested against the use case

Massimo Felici Validation: CRC Cards (©2004-2010

o School of _ e
= informatics

Using CRC Cards

1. Choose a coherent set of use cases

2. Put a card on the table

3. Walk through the scenario, naming cards and responsibilities

4. Vary the situations (i.e., assumptions on the use case), to stress test the cards

5. Add cards, push cards to the side, to let the design evolve (that is, evaluate
different design alternatives)

6. Write down the key responsibility decisions and interactions

Massimo Felici Validation: CRC Cards (©2004-2010

® fSchool of _e
Example — Requirements 8 informatics

A Library System
1. The library system must keep track of when books are borrowed and returned
2. The system must support librarian work
3. The library is open to university staff and students
4. University staff can borrow up to 25 different books

5. Students can borrow up to 15 different books

Massimo Felici Validation: CRC Cards (©2004-2010

Example — Use Cases

A Library System

Library System

X

University Staff

Borrow a copy
of a book

A
/ " <<Include>>
1

—X

i
i . .
Borrower Lelncludes s Librarian

R

Return a copy of a

book
Student

0 inf

School of _ e
ormatics

Massimo Felici

Validation: CRC Cards

©2004-2010

Example — Class Diagram

A Library System

Borrower

10 inf

Record

Copy

Book

School of _ e
ormatics

Massimo Felici

Validation: CRC Cards

©2004-2010

School of _ e

Example — CRC Cards

A Library System

([]
— informatics

Borrower

Record

Responsibilities

Borrow book

Return Book

Collaborators

Record

Record

Responsibilities
Keep track

Collaborators
Copy

Copy

Responsibilities

Record: borrowed or
returned

Book Copies

Collaborators

Librarian

Book

Book

Responsibilities

Book information

Number of
available copies

Collaborators

Massimo Felici

Validation: CRC Cards

©2004-2010

Example — A CRC Game

A Library System

:?OI’I’OWEI’

Responsibilities

2 Borrow book

Return Book

Collaborators
Record 3

Record

Gopy

Responsibilities

g Record: borrowed or
returned

8 Book Copies

Collaborators

Librarian 9

Book 9

“

&

‘A

‘A

12 inf

Record
4

Responsibilities
5 Keep track

Collaborators
Copy 6

5% A

Book
10

Responsibilities

Book information

Number of

:i'lavaila ble copies

Collaborators

School of _ e
ormatics

Massimo Felici

Validation: CRC Cards

©2004-2010

Slide 12: A Library System

e Note that playing with CRC cards points out interactions between classes

e UML provides specific notations (e.g., communication or sequence diagrams)
for modelling these interactions

o School of _ o
= informatics

What CRC Card help with

e Check use case can be achieved
e Check associations are correct

e Check generalizations are correct
e Detect omitted classes

e Detect opportunities to refactor the class model, that is, to move responsibilities
about (and operations in the class model) without altering the overall
responsibility of the system

Massimo Felici Validation: CRC Cards (©2004-2010

] School of _ ¢
- informatics

CRC Cards and Quality

e CRC Cards
— provide a good, early, measure of the quality of the system (design) — solving
problems now is better that later
— are flexible - use them to record changes during validation
e Too many responsibilities
— This indicates low cohesion in the system
— Each class should have at most three or four responsibilities
— Classes with more responsibilities should be split if possible
e Too many collaborators
— This indicates high coupling
— |t may be the division of the responsibilities amongst the classes is wrong

Massimo Felici Validation: CRC Cards (©2004-2010

o School of _ o
= informatics

Principles for Refactoring
e Do not do both refactoring and adding functionality at the same time
e Make sure you have good tests before you begin refactoring

e Take short deliberate steps

Massimo Felici Validation: CRC Cards (©2004-2010

Slide 15: Principles for Refactoring

e Do not do both refactoring and adding functionality at the same time
— Put a clear separation between the two when you are working
— You might swap between them in short steps, e.g., half an hour refactoring,
an hour adding new function, half an hour refactoring what you just added
e Make sure you have good tests before you begin refactoring
— Run the tests as often as possible; that way you will know quickly if your
changes have broken anything
e Take short deliberate steps
— Moving a field from one class to another, fusing two similar methods into a
super class
— Refactoring often involves many localized changes that result in a large scale
change
— If you keep your steps small, and test after each step, you will avoid
prolonged debugging

o School of _ o
—~ informatics

When to Refactor?

e When you are adding a function to your design (program) and you find the old
design (code) getting in the way

e When you are looking at design (code) and having difficulty understanding it

Massimo Felici Validation: CRC Cards (©2004-2010

Slide 16: When to Refactor?

When adding a new function starts becoming a problem, stop adding the new
function and instead refactor the old design (code). Refactoring is a good way of
helping you understand the design (code) and preserving that understanding for
the future.

Suggested Readings

e T. Mens, T. Tourwe. A survey of software refactoring. IEEE Transactions on
Software Engineering, vol.30, no.2, pp. 126-139, February, 2004.

http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817

o School of _ e
—= informatics

OO Design using CRC Cards

1. Review quality of class model
2. ldentify opportunities for refactoring
3. ldentify (new) classes that support system implementation

4. Identify further details (e.g., sub-responsibilities of class responsibilities,
attributes, object creations, destructions and lifetimes, passed data, etc.)

Massimo Felici Validation: CRC Cards (©2004-2010

o School of _ o
—= informatics

OO Analysis using CRC Cards

1. Session focuses on a part of requirements

2. Identify classes (e.g., noun-phrase analysis)

3. Construct CRC cards for these and assign to members
4. Add responsibilities to classes

5. Role-play scenarios to identify collaborators

Massimo Felici Validation: CRC Cards (©2004-2010

o School of _ o
-~ informatics

Common Domain Modelling Mistakes
e Overlay specific noun-phrase analysis
e Counter-intuitive or incomprehensible class and association names
e Assigning multiplicities to associations too soon

e Addressing implementation issues too early

— Presuming a specific implementation strategy
— Committing to implementation constructs
— Tackling implementation issues (e.g., integrating legacy systems)

e Optimising for reuse before checking use cases achieved

Massimo Felici Validation: CRC Cards (©2004-2010

® School of _ o
s informatics

Readings

Required Readings
e K. Beck, W. Cunningham. A Laboratory for Teaching Object-Oriented

Thinking. In Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA '89), ACM, pp. 1-6.

Suggested Readings

e T. Mens, T. Tourwe. A survey of software refactoring. IEEE Transactions on
Software Engineering, vol.30, no.2, pp. 126-139, February, 2004.

Massimo Felici Validation: CRC Cards (©2004-2010

http://doi.acm.org/10.1145/74877.74879
http://doi.acm.org/10.1145/74877.74879
http://doi.acm.org/10.1145/74877.74879
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.1109/TSE.2004.1265817

] School of _ ¢
== iInformatics

Summary

e We should try to check the completeness of the class model (early assurance
the model is correct)

e CRC Cards are a simple way of doing this

e CRC Cards support responsibility-based modeling and design
e CRC Cards identify errors and omissions

e They also give an early indication of quality

e Use the experience of simulating the system to refactor if this necessary

Massimo Felici Validation: CRC Cards (©2004-2010

