
Software Design and Class Diagrams

Massimo Felici

Massimo Felici Software Design and Class Diagrams c©2004-2010



1

Software Design

• The SEOC course is concerned with software design in terms of objects and
components, in particular, object-oriented design

• Object-oriented design is part of object-oriented development where an object-
oriented strategy is used throughout the development process

• The main activities are: Object-oriented analysis, Object-oriented design,
Object-oriented programming

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 1: Software Design

There are various definitions about Software Design. They refer to (the result of) the process of

defining a software system design consisting in the definition of the architecture, components (or

modules), interfaces and other characteristics (e.g., design constraints) of a system or component.

Software design provides a (traceability) link between requirements and an implementable

specification. It is a pervasive activity for which often there is no definitive solution. Design

solutions are highly context dependent.

Key Design techniques and issues involve the identification of a overall structure or architecture,

the identification of the main elements of software that need to be managed.

The design activities involve decomposing system (components) into smaller more manageable

(definitions of) components that are easily implementable. Usually, design is a two stage process:

architectural design and detailed design. Architectural design (or High-level Design) involves (the

identification and specification of) the components forming the system and how they relate one

another. Moreover, it is concerned with those issues related to the system architecture. Detailed

design deals with the function and characteristics of components and how they relate to the

overall architecture.



Slide 1: Software Design

Suggested Readings

• Chapter 14 on Object-oriented design, I. Sommerville. Software Engineering,
Eighth Edition, Addison-Wesley 2007.



2

Key Issues in Software Design

• Concurrency

• Workflow and event handling

• Distribution

• Error handling and recovery

• Persistence of data

• Can you think through some of these issues for the SEOC project?

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 2: Key Issues in Software Design

• Concurrency – Often there is significant interaction that needs management
What are the main concurrent activities? How do we manage their interaction?
For instance, in the VolBank example matching and specifying skills and needs
goes on concurrently.

• Workflow and event handling What are the activities inside a workflow? How
do we handle events?

• Distribution – How is the system distributed over physical (and virtual)
systems?

• Error handling and recovery - What are suitable actions when a physical
component fails (e.g., the database server)? How to handle exceptional
circumstances in the world? For instance, in the VolBank example, a volunteer
fails to appear.

• Persistence of data - Does data need to persist across uses of the system, how
complex? How much of the state of the process?

• Can you think through some of these issues for VolBank?



3

Key Design Techniques

• Abstraction – ignoring detail to get the high level structure right

• Decomposition and Modularization – big systems are composed from small
components

• Encapsulation/information hiding – the ability to hide detail (linked to
abstraction)

• Defined interfaces – separable from implementation

• Evaluation of structure – Coupling: How interlinked a component is; Cohesion:
How coherent a component is

Massimo Felici Software Design and Class Diagrams c©2004-2010



4

Architecture and Structure

• Architectural structures and viewpoints
• Architectural styles
• Design patterns

small-scale patterns to guide the designer
• Families and frameworks

component sets and ways of plugging them together
software product lines

• Architectural design

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 4: Architecture and Structure

Architectural structures and viewpoints deal with system facets (e.g., physical
view, functional or logical view, security view, etc.) separately. Depending
on the architectural emphasis, there are different styles, for example, Three-tier
architecture for a distributed system (interface, middleware, back-end database),
Blackboard, Layered architectures, Model-View-Controller, Time-triggered and so
forth.

Architectural Design supports stakeholder communication, system analysis and
large-scale reuse. It is possible to distinguish diverse design strategies: function
oriented (sees the design of the functions as primary), data oriented (sees the data
as the primary structured element and drives design from there), object oriented
(sees objects as the primary element of design). There is no clear distinction
between Sub-systems and modules. Intuitively, sub-systems are independent and
composed of modules, have defined interfaces for communication with other
sub-systems. Modules are system components and provide/make use of service(s)
to/provided by other modules.



Slide 4: Architecture and Structure

The system architecture affects the quality attributes (e.g., performance, security,
availability, modifiability, portability, reusability, testability, maintainability, etc.)
of a system. It supports quality analysis (e.g., reviewing techniques, static
analysis, simulation, performance analysis, prototyping, etc.). It allows to define
(predictive) measures (i.e., metrics) on the design, but they are usually very
dependent on the process in use.

The software architecture is the fundamental framework for structuring the
system. Different architectural models (e.g., system organizational models,
modular decomposition models and control models) may be developed. Design
decisions enhance system attributes like, for instance, performance (e.g., localize
operations to minimize sub-system communication), security (e.g., use a layered
architecture with critical assets in inner layers), safety (e.g., isolate safety-critical
components), availability (e.g., include redundant components in the architecture)
and maintainability (e.g., use fine-grain self-contained components).



Slide 4: Architecture and Structure

Required Readings

• P. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6):
42-50, November, 1995.

Suggested Readings

• P. Kruchten, H. Obbink, J. Stafford. The Past, Present and Future of Software
Architecture. IEEE Software, 23(2):22-30, March/April, 2006.

http://doi.ieeecomputersociety.org/10.1109/52.469759
http://doi.ieeecomputersociety.org/10.1109/52.469759
http://dx.doi.org/10.1109/MS.2006.59 
http://dx.doi.org/10.1109/MS.2006.59 


5

Architecture Models

• A static structural model that shows the sub-systems or components that
are to be developed as separate units.

• A dynamic process model that shows how the system is organized into
processes at run-time. This may be different from the static model.

• An interface model that defines the services offered by each sub-system
through their public interface.

• A relationship model that shows relationships such as data flow between the
sub-systems.

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 5: Comparing Architecture Design Notations

• Modelling Components: Interface, Types, Semantics, Constraints, Evolution,
Non-functional Properties

• Modelling Connectors: Interface, Types, Semantics, Constraints, Evolution,
Non-functional Properties

• Modelling Configurations: Understandable Specifications, Compositionality
(and Conposability), Refinement and Traceability, Heterogeneity, Scalability,
Evolvability, Dynamism, Constraints, Non-functional Properties



Slide 5: UML Design Notations

• Static Notations: Class and object diagrams, Component diagrams,
Deployment diagrams, CRC Cards

• Dynamic Notations: Activity diagrams, Communication diagrams,
Statecharts, Sequence diagrams



Slide 5: What are the Architects Duties?

• Get it Defined, documented and communicated, Act as the emissary of the
architecture, Maintain morale

• Make sure everyone is using it (correctly), management understands it, the
software and system architectures are in synchronization, the right modeling
is being done, to know that quality attributes are going to be met, the
architecture is not only the right one for operations, but also for deployment
and maintenance

• Identify architecture timely stages that support the overall organization
progress, suitable tools and design environments, (and interact) with
stakeholders

• Resolve disputes and make tradeoffs, technical problems
• Manage risk identification and risk mitigation strategies associated with the

architecture, understand and plan for evolution



6

Class Diagrams

• Support architectural design

Provide a structural view of systems

• Represent the basics of Object-Oriented systems

Identify what classes there are, how they interrelate and how they interact

Capture the static structure of Object-Oriented systems – how systems are
structured rather than how they behave

• Constrain interactions and collaborations that support functional requirements

Link to Requirements

Massimo Felici Software Design and Class Diagrams c©2004-2010



Rationale 7

Class Diagrams

• Desirable to build systems quickly and cheaply (and to meet requirements)

• Desirable to make the system easy to maintain and modify

• Warnings

– The classes should be derived from the (user) domain - avoid abstract
objects

– Classes provide limited support to capture system behaviour – avoid to
capture non-functional requirements of the system as classes

Massimo Felici Software Design and Class Diagrams c©2004-2010



8

Class Diagrams in the Life Cycle

• Used throughout the development life cycle

• Carry different information depending on the phase of the development process
and the level of detail being considered

From the problem to implementation domain

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 8: Class Diagrams in the Life Cycle

Class diagrams can be used throughout the development life cycle. They carry
different information depending on the phase of the development process and
the level of detail being considered. The contents of a class diagram will reflect
this change in emphasis during the development process. Initially, class diagrams
reflect the problem domain, which is familiar to end-users. As development
progresses, class diagrams move towards the implementation domain, which is
familiar to software engineers.



Basics 9

Class Diagrams

• Classes

– Basic Class Components
– Attributes and Operations

• Class Relationships

– Associations
– Generalizations
– Aggregations and Compositions

Massimo Felici Software Design and Class Diagrams c©2004-2010



Construction 10

Class Diagrams
Construction involves

1. Modelling classes

2. Modelling relationships between classes, and

3. Refining and elaborate as necessary

Massimo Felici Software Design and Class Diagrams c©2004-2010



11

Classes and Objects

• Classes represent groups of objects all with similar roles in the system

Structural features define what objects of the class know

Behavioral features define what objects of the class can do

• Classes may

inherit attributes and services from other classes

be used to create objects

• Objects are instances of classes, real-world and system entities

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 11: Classes and Objects

Objects are entities in a software system which represent instances of real-world
and system entities. Objects derive from things (e.g., tangible, real-world objects,
etc.), roles (e.g., classes of actors in systems like students, managers, nurses,
etc.), events (e.g., admission, registration, matriculation, etc.) and interactions
(e.g., meetings, tutorials, etc.).

Objects are created according to some class definition. A class definition serves
as a template for objects and includes declarations of all the attributes and
operations which should be associated with an object of that class. Note that the
level of detail known or displayed for attributes and operations depends on the
phase of the development process. An object is an entity that has a state and a
defined set of operations which operate on that state. The state is represented
as a set of object attributes. The operations associated with the object provide
services to other objects, which request these services when some functionality is
required.



12

Basic Class Compartments

• Name

• Attributes

– represent the state of an object of the class
– are descriptions of the structural or static features of a class

• Operations

– define the way in which objects may interact
– are descriptions of behavioural or dynamic features of a class

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 13

Basic Class Compartments

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 13: Basic Class Compartments
public class Employee {

public string name;

private string address;

public int employeeNumber;

private int socialSecurityNumber;

private string department;

private int salary;

private string taxCode;

public string status;

public void join() {

}

public void leave() {

}

public void retire() {

}

public void changeInformation() {

}

}



14

Attribute Definition
visibility / name : type multiplicity = default {property strings and constraints}

• visibility
• / derived attribute - Attributes by relationship allow the definition of complex

attributes
• name
• type is the data type of the attribute or the data returned by the operation
• multiplicity specifies how many instances of the attributes type are referenced

by this attribute
• property strings: readOnly, union, subset ¡attribute-name¿, redefines

¡attribute-name¿ composite, ordered, bag, sequence, composite
• constraints

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 14: Derived Attributes



15

Visibility

• From More accessible to Less Accessible

public (+), protected (]), package(∼), private (-)

• Warnings: Java allows access to protected parts of a class to any
class in the same package

• Warnings: Although many languages use such terms as public,
private, and protected, they mean different things in different
languages. The meanings of visibility markers can change from
language to language.

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 15: Visibility

• public (+) visibility means that the feature is available to any class associated
with the class that owns the class

• protected (]) visibility means that the feature is available within the class that
owns that feature and any subtype of that class

• package (∼) visibility means that the feature is available only to other classes
in the same package as the declaring class (and the declaring class itself)

• private (-) visibility means that the feature is available only within the class
that owns that feature



16

Multiplicity
Multiplicity specifies how many instances of the attributes type are referenced by
this attribute

• [n..m] – n to m instances

• 0..1 – zero or one instance

• 0..* or * – no limit on the number of instances (including none)

• 1 – exactly one instance

• 1..* – at least one instance

Massimo Felici Software Design and Class Diagrams c©2004-2010



17

Operation Definition
visibility name (parameters) : return-type {properties}

• (Parameters)
direction parameter name : type [multiplicity] = default value properties

• direction: in, inout, out or return
• Operation constraints: preconditions, postconditions, body conditions, query

operations, exceptions
• Static operations: Specify behaviour for the class itself; Invoked directly on

the class
• Methods are implementations of operations

Abstract classes provide operation signatures, but no implementations

Massimo Felici Software Design and Class Diagrams c©2004-2010



18

Class Relationships
Relationship Description

Dependency: objects of one class work briefly
with objects of another class

Association: objects of one class work with
objects of another class for some prolonged
amount of time
Aggregation: one class owns but share a
reference to objects of other class

Composition: one class contains objects of
another class

Generalization (Inheritance): one class is a
type of another class

Massimo Felici Software Design and Class Diagrams c©2004-2010



19

Dependency

• A dependency exists between two elements if changes to the definition of one
element (the supplier or target) may cause changes to the other (the client or
source)

• A Dependency between two classes means that one class uses, or has knowledge
of, another class (i.e., a transient relationship)

• Dependency relationships show that a model element requires another model
element for some purpose

• Dependencies can also indicate relationships between model elements at
different level of abstraction

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 19: Dependency

Dependencies between classes exist for various reasons:

• one class sends a message to the other

• one class has another has part of its data

• one class mentions another as a parameter to an operation



Slide 19: Selected Dependency Keywords

Keyword Meaning

<<call>> The source calls an operation in the target
<<create>> The source creates instances of the target
<<derive>> The source is derived from the target
<<instantiate>> The source is an instance of the target
<<permit>> The target allows the source to access the target’s private

feature
<<realize>> The source is an implementation of a specification or

interface defined by the target
<<refine>> Refinement indicates a relationship between different

semantic levels
<<substitute>> The source is substitutable for the target
<<trace>> Used to track such things as requirements to classes ot

how changes in one model link to changes elsewhere
<<use>> The source requires the target for its implementation



Examples 20

Dependency

Massimo Felici Software Design and Class Diagrams c©2004-2010



21

Association

• an attribute of an object is an associated object

• a method relies on an associated object

• an instance of one class must know about the other in order to perform its
work

• Passing messages and receiving responses

Associations may be annotated with information: Name, Multiplicity, Role Name,
Ends, Navigation

Massimo Felici Software Design and Class Diagrams c©2004-2010



Examples 22

Association

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 23

Association

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 23: Association Example



24

Association Class

• A class can be attached to an association, in which case it is called an
association class

• The association class is not connected at any of the ends of the association,
but is connected to the actual association

• Association classes allow you to add attributes, operations, and other features
to associations

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 25

Association Class

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 25: Another Example of Association Class



26

Aggregation

• is a stronger version of association

• is used to indicate that, as well as having attributes of its own, an instance of
one class may consist of, or include, instances of another class

• are associations in which one class belongs to a collection

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 27

Aggregation

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 27: Other Examples of Aggregations



28

Composition

• Compositions imply coincident lifetime.

• A coincident lifetime means that when the whole end of the association is
created (deleted), the part components are created (deleted).

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 29

Composition

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 29: Another Examples of Composition

Note that the java code implementation for an aggregation (composition)

relationship is exactly the same as the implementation for an association

relationship. It results in the introduction of an attribute.



30

Aggregation versus Composition
Criteria Decision Result

Part-of, contains, owns words are used to describe
relationship between two classes

Aggregation or
Composition

No symmetry Aggregation or
Composition

Transitivity among parts Aggregation or
Composition

Parts are not shared Composition
Multiplicity of the whole is 1 or 0..1 Composition
Parts may be shared Aggregation
Multiplicity of the whole may be larger that 1 Aggegration
Relationship does not fit the other criteria Association

Massimo Felici Software Design and Class Diagrams c©2004-2010



31

Generalization (Inheritance)

• An inheritance link indicating one class is a superclass of the other, the subclass

– An object of a subclass to be used as a member of the superclass
– The behaviour of the two specific classes on receiving the same message

should be similar

• Checking Generalizations: If class A is a generalization of a class B, then
“Every B is an A”

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 31: Design by Contract

Design by Contract: A subclass must keep to the contract of the superclass by ensuring

operations observe the pre and post conditions on the methods and that the class invariant is

maintained.

Assertion is central to Design by Contract – An assertion is a boolean statement that should

never be false and, therefore, will be false only because of a bug.

Design by Contract uses three particular kinds of assertions: post-conditions, pre-conditions
and invariants.

A post-condition is a statement of what the world should look like after execution of an operation.

A pre-condition is a statement of how we expect the world to be before we execute an operation.

An invariant is an assertion about a class.

Suggested Readings

• B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40-51, 1992.

http://dx.doi.org/10.1109/2.161279


Example1 32

Generalization (Inheritance)

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example2 33

Generalization (Inheritance)

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 33: Generalization (Inheritance)

public class Coupon {

public Date issueDate;

public Date expirationDate;

}

public class PercentOff extends Coupon {

public int percent;

}

public class FixedValue extends Coupon {

public int totalValue;

}

public class FreeService extends Coupon {

}



Implementing Generalizations 34

Generalization (Inheritance)

• Java: creating the subclass by extending the superclass

• Inheritance increases system coupling

• Modifying the superclass methods may require changes in many subclasses

• Restrict inheritance to conceptual modelling

• Avoid using inheritance when some other association is more appropriate

Massimo Felici Software Design and Class Diagrams c©2004-2010



35

More on Classes

• Abstract Classes provide the definition, but not the implementation

• Interfaces are collections of operations that have no corresponding method
implementations

– Safer than Abstract classes avoid many problems associated with multiple
inheritance

– Java allows a class to implement any number of interface, but a class inherit
from only one regular or abstract class

• Templates or parameterized classes allow us to postpone the decision as to
which classes a class will work with

Massimo Felici Software Design and Class Diagrams c©2004-2010



Example 36

Abstract Classes

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 36: Abstract Classes

public abstract class Vehicle {

public Color color;

public abstract boolean start();

}

public class ElectricCar extends Vehicle {

public boolean start() {

}

}

public class HybridCar extends Vehicle {

public boolean start() {

}

}



Example 37

Interface Classes

Massimo Felici Software Design and Class Diagrams c©2004-2010



Slide 37: Interface Classes

public interface EmailSystem {

void send(Message textMessage);

}

public class MyEmailSystem implements EmailSystem {

}



38

Template Classes

Massimo Felici Software Design and Class Diagrams c©2004-2010



39

Modelling by Class Diagrams

• Class Diagrams (models)

– from a conceptual viewpoint, reflect the requirements of a problem domain
– From a specification (or implementation) viewpoint, reflect the intended

design or implementation, respectively, of a software system

• Producing class diagrams involve the following iterative activities:

– Find classes and associations (directly from the use cases)
– Identify attributes and operations and allocate to classes
– Identify generalization structures

Massimo Felici Software Design and Class Diagrams c©2004-2010



40

How to build a class diagram

• Design is driven by criterion of completeness either of data or responsibility
– Data Driven Design identifies all the data and see it is covered by some

collection of objects of the classes of the system
– Responsibility Driven Design identifies all the responsibilities of the system

and see they are covered by a collection of objects of the classes of the
system

• Noun identification
– Identify noun phrases: look at the use cases and identify a noun phrase.

Do this systematically and do not eliminate possibilities
– Eliminate inappropriate candidates: those which are redundant, vague,

outside system scope, an attribute of the system, etc.
• Validate the model...

Massimo Felici Software Design and Class Diagrams c©2004-2010



41

Common Domain Modelling Mistakes

• Overly specific noun-phrase analysis

• Counter-intuitive or incomprehensible class and association names

• Assigning multiplicities to associations too soon

• Addressing implementation issues too early: Presuming a specific
implementation strategy, Committing to implementation constructs, Tackling
implementation issues

• Optimising for reuse before checking use cases achieved

Massimo Felici Software Design and Class Diagrams c©2004-2010



42

Class and Object Pitfalls

• Confusing basic class relationships (i.e., is-a, has-a, is-implemented-using)

• Poor use of inheritance

– Violating encapsulation and/or increasing coupling
– Base classes do too much or too little
– Not preserving base class invariants
– Confusing interface inheritance with implementation inheritance
– Using multiple inheritance to invert is-a

Massimo Felici Software Design and Class Diagrams c©2004-2010



43

Required Readings

• UML course textbook

– Chapter 4 on Class Diagram: Classes and Associations
– Chapter 5 on Class Diagram: Aggregation, Composition and Generalization
– Chapter 6 on Class Diagram: More on Associations
– Chapter 7 on Class Diagram: Other Notations

• P. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6):
42-50, November, 1995.

Massimo Felici Software Design and Class Diagrams c©2004-2010

http://doi.ieeecomputersociety.org/10.1109/52.469759
http://doi.ieeecomputersociety.org/10.1109/52.469759


44

Suggested Readings

• Chapter 14 on Object-oriented design, I. Sommerville. Software Engineering,
Eighth Edition, Addison-Wesley 2007.

• P. Kruchten, H. Obbink, J. Stafford. The Past, Present and Future of Software
Architecture. IEEE Software, 23(2):22-30, March/April, 2006.

• B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40-51,
1992.

Massimo Felici Software Design and Class Diagrams c©2004-2010

http://dx.doi.org/10.1109/MS.2006.59 
http://dx.doi.org/10.1109/MS.2006.59 
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279


45

Summary

• Design is a complex matter
• Design links requirements to construction, essential to ensure traceability
• Class Diagram Rationale
• Classes
• Class Relationships
• Modelling by Class Diagrams
• How to build a class diagram
• Common domain modeling mistakes
• Class and Object Pitfalls

Massimo Felici Software Design and Class Diagrams c©2004-2010


