
Software Engineering with Objects and
Components

Massimo Felici

Massimo Felici Software Engineering with Objects and Components c©2004-2010



Course Organisation 1 1

Course Organisation

• SEOC course webpage

http://www.inf.ed.ac.uk/teaching/courses/seoc/

• Mailing List

seoc-students@inf.ed.ac.uk

• SEOC Wiki

https://wiki.inf.ed.ac.uk/SEOC/

• SEOC CVS repositories

Massimo Felici Software Engineering with Objects and Components c©2004-2010

http://www.inf.ed.ac.uk/teaching/courses/seoc/
mailto:seoc-students@inf.ed.ac.uk
https://wiki.inf.ed.ac.uk/SEOC/


Course Organisation 2 2

Course Resources

• Course Textbook

UML, Second Edition, by Simon Bennet, John Skelton and Ken Lunn,
Schaum’s Outline Series, McGraw-Hill, 2005

• Course Resources

Lecture Notes and References

• Software

NetBeans IDE

Massimo Felici Software Engineering with Objects and Components c©2004-2010



Slide 2: Why NetBeans IDE?

• The management/configuration of eclipse plugins seems to be a bit more
complicated. In particular, the UML2 plugin sitting on top of the EMF
(Eclipse Modeling framework) is constantly exposed to the eclipse evolution.
Moreover, the code generation functionality is more complicated, because it
involves subsequent steps (UML models → EMF → Java), and generates
additional Java code that is misleading and difficult to deal with.

• NetBeans, although it seems to be slower than eclipse in terms of performance,
seems it is keeping the plugins management a bit more under control than
eclipse. It supports basic UML models, although not all of them. It also
supports various plugins like Visual Paradigm and BlueJ. The former is quite
powerful, even the community edition (for non commercial use). The latter
is the one adopted by the Introduction to Java Programming course. The
BlueJ plugin is meant to support the transition from BlueJ projects to more
advanced ones with NetBeans.



Slide 2: Why NetBeans IDE?

• These justifications motivated the suggestion of the NetBeans IDE. In
particular, it should be quite useful the link between NetBeans and BuleJ.
This should help who take both courses SEOC and IJP. Moreover, NetBeans
supports also the basic Design Patterns, which are introduced in the course,
and it comes also with Junit.



Course Organisation 3 3

Tutorials

• Tutorials begin in week 3

Frequency once a week ; Maximum 12 people per tutorial group

• 4 Tutorial groups

– SEOC 1, Tue 14:00–14:50, AT 4.12
– SEOC 2, Tue 15:00–15:50, AT 4.12
– SEOC 3, Fri 14:00–14:50, AT 4.12
– SEOC 4, Fri 15:00–15:50, AT 4.12

• Please check your timetable and sign up for a tutorial group

http://www.mysignup.com/seocgroups

Massimo Felici Software Engineering with Objects and Components c©2004-2010

http://www.mysignup.com/seocgroups


Course Organisation 4 4

Coursework

• Group Coursework

in small teams (approx 3-4 people)

two deliverables equally weighted

• Coursework Deadlines

1st deliverable: Friday, 2pm, 29th October 2010 (week 6)

2nd deliverable: Friday, 2pm, 26th November 2010 (week 10)

• Assessment

25% coursework; 75% exam

Massimo Felici Software Engineering with Objects and Components c©2004-2010



On Software Engineering

Massimo Felici

Massimo Felici On Software Engineering c©2004-2010



1

What is Software Engineering

Software Engineering is an engineering discipline that is concerned with all
aspects of software production from the early stages of system specification to
maintaining the system after it has gone into use.

Massimo Felici On Software Engineering c©2004-2010



Slide 1: What is Software Engineering

This lecture provides a very brief introduction to Software Engineering. The SEOC
course focuses on engineering software systems using Objects and Components.
The main learning objectives of the course involve the acquisition of software
engineering knowledge and ability to design, assess and implement object-oriented
systems. The course uses UML as modelling language. The course organisation
embeds some general software engineering principles and practices.

Required Readings

• B. Meyer. Software Engineering in the Academy. IEEE Computer, May 2001,
pp. 28-35. It provides a discussion on software engineering education.

http://dx.doi.org/10.1109/2.920608
http://dx.doi.org/10.1109/2.920608


Slide 1: What is Software Engineering

Suggested Readings

• For an introduction to various aspects of Software Engineering refer to I.
Sommerville. Software Engineering, Eighth Edition, Addison-Wesley 2007. In
particular, Chapter 1 for a general account of Software Engineering.

• SWEBOK - Guide to the Software Engineering Body of Knowledge. 2004
Version, IEEE.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4425811
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4425811


2

Some Aspects of Software Engineering

• Software Processes

• Software Process Models

• Software Engineering Methods

• Costs

• Software Attributes

• Tools

• Professional and Ethical Responsibilities

Massimo Felici On Software Engineering c©2004-2010



Slide 2: Some Aspects of Software Engineering

Software Engineering is concerned with all aspects of software production. The
main objective is to support software production in order to deliver software that
is “fit for purpose”, e.g., good enough (functionally, non-functionally), meets
constraints (e.g., time and financial) of the environment, law, ethics and work
practices.

A Software Process is the set of activities and associated results (e.g., software
specification, software development, software validation and software evolution)
that produce a software product.

A Software Process Model is an overview of the software activities and results
organisation.

Software Engineering processes (e.g., waterfall, spiral, etc.) arrange (deploy
effort) activities differently. The SEOC organisation, to a certain extent, embeds
some basic principles underlying different software engineering processes.



Slide 2: Some Aspects of Software Engineering

Essential software activities are:

• Software Requirements: gaining an accurate idea of what the users of the
system want it to do.

• Software Design: the design of a system to meet the requirements.

• Software Construction: the realisation of the design as a program.

• Software Testing: the process of checking the code meets the design.

• Software Configuration, Operation and Maintenance: major cost in the lifetime
of systems.

Suggested Readings

• Chapter 4 on Software Processes in Summerville’s book.



3

Why Software Fails?

• Complex causes (interactions) trigger software failures

• Software fails in context

• Some issues related to software engineering

– Misunderstood requirements
– Design issues
– Mistakes in specification, design or implementation
– Operational issues

• Faults, Errors and Failures

Massimo Felici On Software Engineering c©2004-2010



Slide 3: Why Software Fails?

Unfortunately, software still fails too often. Software fails in complex manners.
Although the course stresses the importance of software designs and models, it
is often difficult to understand how software engineering aspects (e.g., design,
implementation, etc.) relate to or address software failures. Software failures may
have dependability (e.g., safety, reliability, etc.) as well as financial implications.

Required Readings

• R.N. Charette. Why Software Fails. IEEE Spectrum, pp. 42-49, September
2005.

Suggested Readings

• Chapter 3 on Critical Systems in Sommerville’s book.

http://dx.doi.org/10.1109/MSPEC.2005.1502528
http://dx.doi.org/10.1109/MSPEC.2005.1502528


4

Faults, Errors and Failures

• Fault - The adjudged or hypothesized cause of a an error is called a fault. A
fault is active when it causes an error, otherwise it is dormant.

• Error - The deviation from a correct service state is called an error. An error
is the part of the total state of the system that may lead to its subsequent
service failure.

• Failure - A failure is an event that occurs when the delivered service deviates
from correct service.

Warnings: different understandings of faults, errors and failures.

Massimo Felici On Software Engineering c©2004-2010



Slide 4: Faults, Errors and Failures

An important aspect is to understand how faults, errors and failures relate each
other. Research and practice in engineering safety-critical systems emphasize
the underlying mechanisms of software failures. Note that understanding these
concepts (i.e., faults, errors and failures) in practice often requires expertise within
specific application domains, which might have different interpretations of them.

Suggested Readings

• A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing 1(1):11-33, January-March 2004.

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2


Software Failures 1 5

Some “Famous” Software Failures

• Patriot Missile failure

– Inaccurate calculation of the time since boot due to computer arithmetic
errors Coding errors may effect overall software system behaviour

• The Ariane 5 Launcher failure

– The complete loss of guidance and altitude information 37 seconds after
start of the main engine ignition sequence

– The loss of information was due to specification and design errors in the
software of the inertial reference system

– The software that failed was reused from the Ariane 4 launch vehicle. The
computation that resulted in overflow was not used by Ariane 5

Massimo Felici On Software Engineering c©2004-2010



Software Failures 2 6

Some “Famous” Software Failures

• The London Ambulance fiasco

• Therac 25 and other medical device failures

– (Software) Reliability is different than (System) Safety

Massimo Felici On Software Engineering c©2004-2010



Slide 6: Some “Famous” Software Failures

Required Readings

• B. Nuseibeh. Ariane 5: Who Dunnit? IEEE Software, pp. 15-16, May/June
1997.

• J.-M. Jézéquel, B. Meyer. Design by Contract: The Lessons of Ariane. IEEE
Computer, pp. 129-130, January 1997.

• M. Grottke, K.S. Trivedi. Fighting Bugs: Remove, Retry, Replicate, and
Rejuvenate. IEEE Computer, pp. 107-109, February 2007.

http://dx.doi.org/10.1109/MS.1997.589224
http://dx.doi.org/10.1109/MS.1997.589224
http://dx.doi.org/10.1109/2.562936
http://dx.doi.org/10.1109/2.562936
http://dx.doi.org/10.1109/MC.2007.55
http://dx.doi.org/10.1109/MC.2007.55


Slide 6: Some “Famous” Software Failures

Suggested Readings

• N.G. Leveson, C.S. Turner. An investigation of the Therac-25 accidents. IEEE
Computer 26(7): 18-41, Jul 1993.

• D.R. Wallace, D.R. Kuhn. Lessons from 342 Medical Device Failures. In
Proceedings of HASE 1999, pp. 123-131.

http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1109/HASE.1999.809487
http://dx.doi.org/10.1109/HASE.1999.809487


The Patriot Missile Failure 1 7

The Patriot Missile Failure

Accident Scenario: On February 25, 1991, during the Gulf War, an American
Patriot Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army barracks, killing
28 soldiers and injuring around 100 other people.

Massimo Felici On Software Engineering c©2004-2010



Slide 7: The Patriot Missile Failure

A report of the General Accounting office, GAO/IMTEC-92-26, entitled Patriot
Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi
Arabia, reported on the cause of the failure.



The Patriot Missile Failure 2 8

The Patriot Missile Failure

• Fault - Inaccurate calculation of the time since boot due to computer arithmetic
errors.

• Error - The small chopping error, when multiplied by the large number giving
the time in tenths of a second, lead to a significant error of 0.34 seconds.

• Failure - A Scud travels at about 1,676 meters per second, and so travels
more than 500 meters in this time. This was far enough that the incoming
Scud was outside the range gate that the Patriot tracked.

Massimo Felici On Software Engineering c©2004-2010



Slide 8: The Patriot Missile Failure

Fault - The time in tenths of second as measured by the system’s internal clock
was multiplied by 1/10 to produce the time in seconds. This calculation was
performed using a 24 bit fixed point register. In particular, the value 1/10, which
has a non-terminating binary expansion, was chopped at 24 bits after the radix
point.



Slide 8: The Patriot Missile Failure

Error - Indeed, the Patriot battery had been up around 100 hours, and an easy
calculation shows that the resulting time error due to the magnified chopping
error was about 0.34 seconds. The binary expansion of 1/10 is

0.0001100110011001100110011001100...

The 24 bit register in the Patriot stored instead

0.00011001100110011001100

introducing an error of

0.0000000000000000000000011001100... binary, or about 0.000000095 decimal.
Multiplying by the number of tenths of a second in 100 hours gives

0.000000095× 100× 60× 60× 10 = 0.34.

Ironically, the fact that the bad time calculation had been improved in some parts
of the code, but not all, contributed to the problem, since it meant that the
inaccuracies did not cancel.



The Patriot Missile Failure 3 9

The Patriot Missile Failure

• Identifying coding errors is very hard

seemingly insignificant errors result in major changes in behaviour

• Original fix suggested a change in procedures

reboot every 30 hours impractical in operation

• Patriot is atypical

coding bugs rarely cause accidents alone

• Maintenance failure failure of coding standards and traceability

Massimo Felici On Software Engineering c©2004-2010



UML 1 10

Supporting Software Engineering Practices

• Provides a range of graphical notations that capture various aspects of the
engineering process

• Provides a common notation for various different facets of systems

• Provides the basis for a range of consistency checks, validation and verification
procedures

• Provides a common set of languages and notations that are the basis for
creating tools

Massimo Felici On Software Engineering c©2004-2010



Slide 10: Supporting Software Engineering Practices

Required Readings UML course textbook

• Chapter 1 on the Introduction to the Case Studies.

• Chapter 2 on the Background to UML.



UML 2 11

Some UML Diagrams

• Use Case Diagrams

• Class Diagrams

• Interaction Diagrams

Sequence and Communication Diagrams

• Activity Diagrams

• State Machines

Massimo Felici On Software Engineering c©2004-2010



Slide 11: Some UML Diagrams

• Use Case Diagrams

Used to support requirements capture and analysis; show the actors involvement
in system activities

• Class Diagrams

Capture the static structure of systems; associations between classes

• Interaction Diagrams

Capture how objects interact to achieve a goal



Slide 11: Some UML Diagrams

• Activity Diagrams

Capture the workflow in a situation

• State Machines:

Capture state change in objects of the system

• Other Diagrams: Component and Deployment Diagrams



12

Required Readings

• UML course textbook

– Chapter 1 on the Introduction to the Case Studies.

– Chapter 2 on the Background to UML

• B. Meyer. Software Engineering in the Academy. IEEE Computer, May 2001, pp. 28-35.

• R.N. Charette. Why Software Fails. IEEE Spectrum, pp. 42-49, September 2005.

• B. Nuseibeh. Ariane 5: Who Dunnit? IEEE Software, pp. 15-16, May/June 1997.

• J.-M. Jézéquel, B. Meyer. Design by Contract: The Lessons of Ariane. IEEE Computer, pp.

129-130, January 1997.

• M. Grottke, K.S. Trivedi. Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate. IEEE

Computer, pp. 107-109, February 2007.

Massimo Felici On Software Engineering c©2004-2010



13

Suggested Readings

• I. Sommerville. Software Engineering, Eighth Edition, Addison-Wesley 2007.

– Chapter 1 for a general account of Software Engineering

– Chapter 3 on Critical Systems

– Chapter 4 on Software Processes

• SWEBOK – Guide to the Software Engineering Body of Knowledge. 2004 Version, IEEE.

• A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing

1(1):11-33, January-March 2004.

• N.G. Leveson, C.S. Turner. An investigation of the Therac-25 accidents. IEEE Computer

26(7): 18-41, Jul 1993.

• D.R. Wallace, D.R. Kuhn. Lessons from 342 Medical Device Failures. In Proceedings of HASE

1999, pp. 123-131.

Massimo Felici On Software Engineering c©2004-2010



14

Summary

• SEOC organisation

• An introduction to Software Engineering

• Why Software Fails

• Faults, Errors and Failures

• Examples of Software Failures

• An Outline of some UML diagrams

• Required Readings and Suggested Readings

Massimo Felici On Software Engineering c©2004-2010


