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Ariane 5: Who Dunnit?
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At a 1993 software symposium in inland China, a
keynote speaker from the US joked that he had arrived
safely because the transportation systems in China “were
not yet heavily controlled by software.” When disastrous
accidents occur, computers are often singled out for blame—
sometimes, rightly so. What have we learned from our
many expensive lessons? Not much. One lesson is the need
for risk management, but as Nuseibeh points out, it is not
practiced even in mission critical projects like Ariane 5.

—Tomoo Matsubara

ON 4 JUNE 1996, THE MAIDEN FLIGHT OF
the Ariane 5 launcher exploded about 37 seconds
after liftoff. Scientists with experiments on board
that had taken years to prepare were devastated.
For many software engineering researchers, how-
ever, the disaster is a case study rich in lessons. To
begin learning from this disaster, we need look no
further than a report on it issued by an indepen-
dent inquiry board set up by the French and
European Space Agencies.

VARIED VIEWS. Here are some of the interpretations
of the report that I have heard.

♦ What the programmers said: The disaster is
clearly the result of a programming error. An incor-
rectly handled software exception resulted from a
data conversion of a 64-bit floating point to a 16-bit
signed integer value. The value of the floating point
number that was converted was larger than what
could be represented by a 16-bit integer, resulting
in an operand error not anticipated by the Ada code.
Better programming practice would have prevented
this failure from occurring.

♦ What the designers said: The disaster is clearly
the result of a design error. The system design spec-
ification accounted for random hardware failures
only, and therefore the exception handling mecha-
nism was unable to recover from a random software
error. As a result, a correctly functioning processor
in the Inertial Reference System (SRI) was shut
down, and soon afterwards the backup processor
“failed” in the same way. A better design, such as one

that disallowed software exceptions from halting
hardware units that were functioning correctly,
would have prevented the failure.

♦ What the requirements engineers said: The dis-
aster is clearly the result of incorrect analysis of
changing requirements. The requirements for
Ariane 5 were different from earlier models of
Ariane. However, the rogue piece of alignment code
that resulted in the failure of Ariane 5 was not actu-
ally needed after liftoff, as it had been on earlier
models. It remained operational in Ariane 5 with-
out satisfying any (traceable) requirement. Better
requirements analysis and traceability would have
prevented this failure from occurring. Software
maintenance researchers supported this view. The
failure, they claimed, could have been prevented if
the adaptive maintenance team had not adopted the
approach of “if it ain’t broke, don’t fix it.”

♦ What the test engineers said: The disaster is clearly
the result of inadequate validation and verification,
testing, and review. For example, as the report states,
there was no test to verify that the SRI would behave
correctly “when being subjected to the countdown
and flight time sequence and the trajectory of Ariane
5.” This, and many other ground tests that could have
been performed by suppliers during acceptance test-
ing or review, would have exposed the failure.

♦ What the project managers said: The disaster is
clearly the result of ineffective development
processes and project management. For example, the
review process for Ariane 5 development was inad-
equate. In reviewing specifications, code, and ratio-
nale documents, no participants external to the pro-
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ject were involved, and code and its associ-
ated documentation were frequently in-
consistent. Improved project management
processes that facilitate closer engineering
cooperation—with “clear-cut authority and
responsibility”—would have increased the
chances of exposing the failure.

ANOTHER VIEW. All these interpretations are
valid. Certainly, a programming error
triggered the failure. Certainly, more rig-
orous design could have prevented such a
programming error from occurring.
Certainly, better requirements analysis
and specification would have made design
verification more achievable. And cer-
tainly, improved project management
could have provided a more effective or-
ganizational process that recognized the
impact of changing requirements on sys-
tem functionality and behavior.

I would also add inadequate risk man-
agement to the preceding list, since it partly
explains the original decision not to han-
dle the fatal exception. That decision was
the correct one when it was made (when
the primary concern was to keep the SRI
processor workload below the chosen
threshold of 80 percent). Unfortunately,
the decision became the wrong one when
the requirements changed. So, a require-
ments conflict—between a requirement for
robustness and a requirement for processor
load—was resolved one way, but as time
passed the original resolution was invali-
dated (for more on this see my article with
Steve Easterbrook, “Using Viewpoints for
Inconsistency Management,” in BCS/IEE
Software Engineering Journal, Jan. 1996).

Jean-Marc Jézéquel and Bertrand
Meyer suggest that this is a problem of
specification reuse, which could have been
mitigated through “design by contract” to
specify interfaces between modules pre-
cisely (“Design by Contract: The Lessons
of Ariane,” Computer, Jan. 1997). I prefer to
classify this as a failure of risk management
because a risky decision was not reviewed
as the project evolved (although, certainly,
more precise specifications of affected and
reused components could have helped to
highlight dependencies and risks). Thus,
the key lesson is that risk management

should not be performed at the start of a
project and then forgotten; risk can change
as requirements change, and in software
systems that change, risk is more likely to
increase than decrease.

DEBUNKING  MYTHS. Over the years, there
have been many spectacular failures of
safety-critical systems, the technical causes
of which have been rigorously analyzed (see,
for example, Nancy Leveson’s Safeware:

System Safety and Computers, Addison-
Wesley, 1995). Although the Ariane 5 dis-
aster is generally attributed to software fail-
ure, we court danger when we develop
unreasonable expectations of software. For
example, believing that “computers provide
greater reliability than the devices they re-
place” or that they “reduce risk over me-
chanical systems” are but two of many
myths about software.

Software fails and engineering trade-offs
must  be made. For example, an unhandled
exception forces developers to protect only
some variables. Changing software is not
easy because doing so can introduce as many
errors as changes. Reuse does not necessar-
ily increase system safety, as the reuse of the
“wrong” piece of software demonstrated in
Ariane 5. Software testing is by its nature
partial, because it only flags errors and can-
not prove their absence. Conversely, for-
mally verifying an entire software system
such as Ariane is typically unfeasible.

Of course, improved fine-grain proc-
esses, such as better programming and de-
sign techniques, as well as coarse-grain
processes, such as better project manage-
ment, may help prevent such failures from
occurring. However, as Anthony Finkel-
stein and John Dowell point out, for large-
scale software systems development, the

complexity of problems and solutions is
such that the real reasons for failure are usu-
ally systemic (“A Comedy of Errors: The
London Ambulance Service,” Proc. 8th Int’l
Workshop Software Specification and Design,
IEEE Computer Society Press, 1996). That
is, it is the combination and interaction of
numerous related, overlapping activities and
perspectives that result in failure. Clearly,
research agendas should recognize the need
for sound software engineering principles
such as separating concerns (exemplified by
object-orientation, multiple views, and
component-based development). They
must also recognize, however, the impor-
tance of relating concerns (exemplified by
work on managing interference, interoper-
ability, and coordination). Finally, recog-
nizing that building software systems is an
engineering process and requires precise
specifications and trained engineers is, I be-
lieve, an obvious but fundamental first step
toward developing safer systems.

Conclusion: Who dunnit? The butler
did it. Who discussed it? The researchers.
As my colleague Jeff Kramer pointed out,
the claims I recount here were made by re-
searchers, rather than practitioners—the
latter being much less enthusiastic about
accepting blame for the failure! ◆

A full text of the inquiry board’s report,
“Ariane 5: Flight 501 Failure,” is available at
http://www.esrin.esa.it/htdocs/tidc/Press/Press96
/press33.html.
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