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software testers and developers—two very
different functions—play.

Assuming that the bugs users report
occur in a software product that really is in
error, the answer could be any of these:

■ The user executed untested code. Because
of time constraints, it’s not uncommon for
developers to release untested code—code
in which users can stumble across bugs. 

■ The order in which statements were exe-
cuted in actual use differed from that dur-
ing testing. This order can determine
whether software works or fails.

■ The user applied a combination of
untested input values. The possible input
combinations that thousands of users
can make across a given software inter-
face are simply too numerous for testers
to apply them all. Testers must make
tough decisions about which inputs to

test, and sometimes we make the wrong
decisions.

■ The user’s operating environment was
never tested. We might have known about
the environment but had no time to test
it. Perhaps we did not (or could not)
replicate the user’s combination of
hardware, peripherals, operating sys-
tem, and applications in our testing lab.
For example, although companies that
write networking software are unlikely
to create a thousand-node network in
their testing lab, users can—and do—
create such networks.

Through an overview of the software
testing problem and process, this article
investigates the problems that testers face
and identifies the technical issues that any
solution must address. I also survey existing
classes of solutions used in practice.
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What Is Software
Testing? And Why
Is It So Hard?

James A. Whittaker, Florida Institute of TechnologySoftware testing is
arguably the least

understood part of
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process. Through
a four-phase
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author shows why
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V
irtually all developers know the frustration of having software
bugs reported by users. When this happens, developers inevitably
ask: How did those bugs escape testing? Countless hours doubt-
less went into the careful testing of hundreds or thousands of

variables and code statements, so how could a bug have eluded such vigi-
lance? The answer requires, first, a closer look at software testing within the
context of development. Second, it requires an understanding of the role
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Readers interested in further study will find
the sidebar “Testing Resources” helpful.

Testers and the Testing Process

To plan and execute tests, software
testers must consider the software and the
function it computes, the inputs and how
they can be combined, and the environment
in which the software will eventually oper-
ate. This difficult, time-consuming process
requires technical sophistication and proper
planning. Testers must not only have good
development skills—testing often requires a
great deal of coding—but also be knowl-
edgeable in formal languages, graph theory,
and algorithms. Indeed, creative testers
have brought many related computing disci-
plines to bear on testing problems, often
with impressive results.

Even simple software presents testers
with obstacles, as the sidebar “A Sample
Software Testing Problem” shows. To get a
clearer view of some of software testing’s
inherent difficulties, we can approach test-
ing in four phases:

■ Modeling the software’s environment
■ Selecting test scenarios

■ Running and evaluating test scenarios
■ Measuring testing progress

These phases offer testers a structure in
which to group related problems that they
must solve before moving on to the next
phase. 
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Every software development organization tests its products, yet
delivered software always contains residual defects of varying severi-
ty. Sometimes it’s hard to imagine how a tester missed a particularly
glaring fault. In too many organizations, testers are ill-equipped for
the difficult task of testing ever-more-complex software products.
Informal surveys of seminar audiences suggest that few of those who
perform testing (either as a profession or as an adjunct to develop-
ment or other roles) have been adequately trained in testing or have
software testing books on their desks. 

James Whittaker sheds some light on why testing today’s software
products is so challenging, and he identifies several solid approaches
that all testers should be able to thoughtfully apply. The effective
tester has a rich toolkit of fundamental testing techniques, under-
stands how the product will be used in its operating environment, has
a nose for where subtle bugs might lurk in the product, and employs
a bag of tricks to flush them out. The methods described here can help
testers provide a sensible answer to the question of what they really
mean when they say they are done testing a software system.

—Karl Wiegers and Dave Card, Nuts & Bolts editors

Literature on software testing has appeared since the begin-
ning of computer science but the paper that defined the field
and instigated much of today’s research agenda is John
Goodenough and Susan Gerhart’s classic, “Toward a Theory of
Test Data Selection” (IEEE Trans. Software Eng., June 1975).
That same year began the prolific research career of William
Howden, whose papers and book chapters have helped shape
the field (see www-cse.ucsd.edu/users/howden for a complete
listing). A complete list of testing researchers along with links to
their home pages can be found at Roland Untch’s Storm site
(www.mtsu.edu/~storm).

The seminal book on testing was Glenford Myers’ The Art of
Software Testing (John Wiley & Sons, 1979), which was the
only testing book of note for years. Today, however, a search of
amazon.com for “software testing” yields more than 100
matches. Among those books, a handful are considered con-
tenders to succeed Myers’.

Brian Marick’s The Craft of Software Testing (Prentice Hall,
1995) is my pick for a solid introduction to the subject and is
full of good advice for handling tough testing problems. In
addition, the author is active at posting updates to the appen-

dices and interacting with his readers on his Web site (www.rst-
corp.com/marick). Cem Kaner’s Testing Computer Software
(The Coriolis Group, 1993) is very popular among industry
practitioners for its easy reading and good examples. The best-
selling testing book is standard issue for new testers at many of
the best software testing companies. Boris Beizer’s Black Box
Testing (John Wiley & Sons, 1995) is chock-full of examples
and is perhaps the most methodical and prescriptive of the test-
ing books. It also provides a good treatment of using graph
techniques to test programs. Finally, I like Bill Hetzel’s The
Complete Guide to Software Testing (John Wiley & Sons, 1993)
for its thoroughness. It is one of the few testing books that dis-
cusses testing process and life-cycle activity.

If you prefer finding free information on the Web, I suggest
visiting the Storm site mentioned earlier and also highly rec-
ommend Bret Pettichord’s software testing hotlist: an anno-
tated list of links to some of the Web’s best testing informa-
tion (www.io.com/~wazmo/qa). Finally, you might consider
participating in Danny Faught’s discussion list (swtest-
discuss@rsn.hp.com) or the newsgroup comp.software.
testing.

Testing Resources



Phase 1: Modeling the Software’s
Environment

A tester’s task is to simulate interaction
between software and its environment.

Testers must identify and simulate the inter-
faces that a software system uses and enu-
merate the inputs that can cross each inter-
face. This might be the most fundamental
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A small program displays a window with the current system
time and date, which can be changed by typing new values
into the edit fields as shown in Figure A. The program is ter-
minated by the Alt-F4 keystroke sequence, and the Tab key
moves between fields.

In deciding how to test this (or any) program, a software
tester considers the environment in which the software oper-
ates; the source code that defines the software; and the inter-
face between the software and its environment.

Environment
Software exists in an environment in which other entities

(users) stimulate it with inputs. The software provides those
users with output. This example program has two input sources,
the obvious human user who supplies inputs from the set {time,
date, Tab, Alt-F4}, and the operating system “user” that sup-
plies memory for the program to run
and supplies the current system time
and date as an application service.

A diligent tester will consider the valid
inputs from each of these sources as
well as invalid and unexpected inputs.
What if the human user types other Alt-
sequences or keystrokes outside the
acceptable input set? What if available
memory is insufficient for the program
to run? What if the system clock mal-
functions? Testers must consider these
possibilities, select the most important
ones, and figure out how to simulate
these conditions.

Testers next think about how users
interact in ways that might cause the
software to fail. What happens, for
example, when some other program
changes the time and date—does our
application properly reflect this
change? Today’s multitasking operating
systems demand that testers think
through such scenarios.

Source code
The code for this application might

have a While loop similar to the one in
Figure B.

How many test cases does it take to
fully cover, or exercise, the source code?
To determine this, we evaluate each con-

dition to both true and false by means of a truth table. We thus
execute not only each source statement, but we also cover each
possible branch in the software. The truth table in Figure C doc-
uments each possible combination of conditions in the While
loop, the three parts of the Case statement, and the nest-
ed If statements.

A Sample Software Testing Problem

Current Time: 9:28:32pm

Current Date: 24 Aug 1999

New Time:

New Date:

Figure A. Current system time and date, along with
fields for entering new values.

Input = GetInput()

While (Input ≠ Alt-F4) do

Case (Input = Time)

If ValidHour(Time.Hour) and ValidMin(Time.Minute) and

ValidSec(Time.Second) and ValidAP(Time.AmPm)

Then

UpdateSystemTime(Time)

Else

DisplayError(“Invalid Time.”)

Endif

Case (Input = Date)

If ValidDay(Date.Day) and ValidMnth(Date.Month) and

ValidYear(Date.Year)

Then

UpdateSystemDate(Date)

Else

DisplayError(“Invalid Date.”)

Endif

Case (Input = Tab)

If TabLocation = 1

Then

MoveCursor(2)

TabLocation = 2

Else

MoveCursor(1)

TabLocation = 1

Endif

Endcase

Input = GetInput()

Enddo

Figure B. Sample source code demonstrating a While loop.



issue that testers face, and it can be difficult,
considering the various file formats, commu-
nication protocols, and third-party (applica-
tion programming interfaces) available. Four

common interfaces are as follows:

■ Human interfaces include all common meth-
ods for people to communicate with soft-
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These eight possible cases cover only statements and branch-
es. When we consider how each complex condition in the If
statements actually gets evaluated, we must add several more
cases. Although there is only one way for these statements to

evaluate true (that is, every condition must be true for the state-
ment to be true), there is more than one way for the first two If
statements to evaluate false. In fact, we’d find that there are 
2x – 1 ways (where x is the number of conditions in the state-
ment).

Using this logic, there are 24 – 1 = 15 ways to execute the
third test and 23 – 1 = 7 ways to execute the fifth (each of these
cases appears in bold, above), for a total of 28 test cases.
Now, imagine how many test cases would be required to test
a software system with a few hundred thousand lines of code
and thousands of such complex conditions to evaluate. It’s
easy to see why software is commonly released with unexe-
cuted source code.

In addition to covering the source code, testers also must
think about missing code. The fact that the Case statement has
no default case could present problems.

Interface
Besides testing the environment and the source code, we must

also determine the values assigned to the specific data that cross-
es the interface from the environment to the software under test;
for example, Time and Date. Variable input is difficult to test
because many variable types can assume a wide range of pos-
sible values. How many different times are there in a day? The
combinatorics aren’t encouraging: 12 hours × 60 minutes × 60
seconds × 2 am/pm for a total of 86,400 different input values.
That’s just the valid values; invalid values like 29 o’clock must also
be tested.

Next we must consider the possible legal and illegal values
for the date field, and finally, decide on specific combinations
of time and date to enter simultaneously—like midnight of the
year 1999. This is enough to overwhelm even the biggest test-
ing budget.

Finally, we must determine which inputs will be applied con-
secutively during testing. This is, perhaps, the most subtle and
elusive aspect of testing. Obviously, the first input to be applied
is the one that invokes the software. Next, we must choose to
apply one of the other inputs, choose another to follow that, and
so on until we exit the software. Much can happen during such
sequencing. Will the software accept several consecutive Tab
keys? Will it handle a change to the Time field only (leaving the
Date field unchanged), the Date field only, and also changes to
both? The only way to find out is to apply each of these cases
separately.

How many cases are there? Since the While loop is
unbounded, there is no upper limit. Testers have two ways to
handle infinite input domains. First, we might isolate infinite
input subsets into separate subdomains,1 decomposing the
problem into smaller problems.

Second, as in development, we can abstract; here, inputs into
events. Rather than deal with specific physical inputs such as
mouse clicks and keystrokes, testers create abstract events that
encompass a number of physical input sequences. We did this in
the example above by creating the inputs Time and Date. During
analysis of the input domain, testers can use these abstractions to
think through the problem. When the test scenario is actually
implemented, testers can replace the abstraction with one of its
possible physical instantiations. (I use “scenario” to mean simply
“instructions about what things to test.” A more precise term is
“test case,” which implies exact specification of initial conditions,
inputs to apply, and expected outputs.)

Reference
1. E.J. Weyuker and T.J. Ostrand, “Theories of Program Testing and

the Application of Revealing Subdomains,” IEEE Trans. Software
Eng., Vol. 6, No. 3, May 1980, pp. 236–246.
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Figure C. A truth table such as this helps keep track
of all possible combinations of inputs.



ware. Most prominent is the GUI but older
designs like the command line interface and
the menu-driven interface are still in use.
Possible input mechanisms to consider are
mouse clicks, keyboard events, and input
from other devices. Testers then decide how
to organize this data to understand how to
assemble it into an effective test.

■ Software interfaces, called APIs, are how soft-
ware uses an operating system, database, or
runtime library. The services these applica-
tions provide are modeled as test inputs. The
challenge for testers is to check not only the
expected but also the unexpected services. For
example, all developers expect the operating
system to save files for them. The service that
they neglect is the operating system’s inform-
ing them that the storage medium is full. Even
error messages must be tested.

■ File system interfaces exist whenever soft-
ware reads or writes data to external files.
Developers must write lots of error-checking
code to determine if the file contains appro-
priate data and formatting. Thus, testers
must build or generate files with content
that is both legal and illegal, and files that
contain a variety of text and formatting.

■ Communication interfaces allow direct
access to physical devices (such as device
drivers, controllers, and other embedded
systems) and require a communication pro-
tocol. To test such software, testers must be
able to generate both valid and invalid pro-
tocol streams. Testers must assemble—and
submit to the software under test—many
different combinations of commands and
data, in the proper packet format.

Next, testers must understand the user
interaction that falls outside the control of
the software under test, since the conse-
quences can be serious if the software is not
prepared. Examples of situations testers
should address are as follows:

■ Using the operating system, one user
deletes a file that another user has open.
What will happen the next time the soft-
ware tries to access that file?

■ A device gets rebooted in the middle of a
stream of communication. Will the soft-
ware realize this and react properly or
just hang?

■ Two software systems compete for dupli-
cate services from an API. Will the API
correctly service both?

Each application’s unique environment can
result in a significant number of user inter-
actions to test. 

Considerations
When an interface presents problems of

infinite size or complexity, testers face two
difficulties: They must carefully select val-
ues for any variable input, and they must
decide how to sequence inputs. In selecting
values, testers determine the values of indi-
vidual variables and assign interesting value
combinations when a program accepts mul-
tiple variables as input. 

Testers most often use the boundary value
partitioning technique1 for selecting single
values for variables at or around boundaries.
For example, testing the minimum, maxi-
mum, and zero values for a signed integer is
a commonly accepted idea as well as values
surrounding each of these partitions—for
example, 1 and –1 (which surround the zero
boundary). The values between boundaries
are treated as the same number; whether we
use 16 or 16,000 makes no difference to the
software under test.

A more complex issue is choosing values
for multiple variables processed simultane-
ously that could potentially affect each other.
Testers must consider the entire cross prod-
uct of value combinations. For two integers,
we consider both positive, both negative, one
positive and one zero, and so forth.2

In deciding how to sequence inputs, testers
have a sequence generation problem. Testers
treat each physical input and abstract event
as symbols in the alphabet of a formal lan-
guage and define a model of that language. A
model lets testers visualize the set of possible
tests to see how each test fits the big picture.
The most common model is a graph or state
diagram, although many variations exist.
Other popular models include regular
expressions and grammars, tools from lan-
guage theory. Less-used models are stochastic
processes and genetic algorithms. The model
is a representation that describes how input
and event symbols are combined to make
syntactically valid words and sentences.

These sentences are sequences of inputs
that can be applied to the software under test.
For example, consider the input Filemenu.
Open, which invokes a file selection dialog
box; filename, which represents the selec-
tion (with mouse clicks, perhaps) of an exist-
ing file, and ClickOpen and ClickCancel,

If code and
input coverage
were sufficient,

released 
products 

would have
very few bugs.
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which represent button presses. The sequence
Filemenu.Open filename ClickOpen is
legal, as are many others. The sequence
ClickCancel Filemenu.Open is impossible
because the cancel button cannot be pressed
until the dialog box has been invoked. The
model of the formal language can make such
a distinction between sequences.

Text editor example
We can represent legal uses of the file

selection dialog in, for example, a text edi-
tor with the regular expression:

Filemenu.Open filename*  (ClickOpen |

ClickCancel)

in which the asterisk represents the Kleene
closure operator indicating that the filename
action can occur zero or more times. This
expression indicates that the first input
received is Filemenu.Open followed by
zero or more selections of a filename(with a
combination of mouse clicks and keyboard
entries), then either the Openor Cancelbut-
ton is pressed. This simple model represents
every combination of inputs that can hap-
pen, whether they make sense or not.

To fully model the software environment
for the entire text editor, we would need to
represent sequences for the user interface
and the operating system interface. Further-
more, we would need a description of legal
and corrupt files to fully investigate file sys-
tem interaction. Such a formidable task
would require the liberal use of decomposi-
tion and abstraction.

Phase 2: Selecting Test Scenarios

Many domain models and variable parti-
tions represent an infinite number of test sce-
narios, each of which costs time and money.
Only a subset can be applied in any realistic
software development schedule, so how does
a smart tester choose? Is 17 a better integer
than 34? How many times should a filename
be selected before pressing the Open button?

These questions, which have many
answers, are being actively researched. Test-
ers, however, prefer an answer that relates to
coverage of source code or its input domain.
Testers strive for coverage: covering code
statements (executing each source line at least
once) and covering inputs (applying each
externally generated event). These are the

minimum criteria that testers use to judge the
completeness of their work; therefore, the test
set that many testers choose is the one that
meets their coverage goals.

But if code and input coverage were suffi-
cient, released products would have very few
bugs. Concerning the code, it isn’t individual
code statements that interest testers but execu-
tion paths: sequences of code statements repre-
senting an execution of the software.
Unfortunately, there are an infinite number of
paths. Concerning the input domain, it isn’t the
individual inputs that interest testers but input
sequences that, taken as a whole, represent sce-
narios to which the software must respond.
There are an infinite number of these, too.

Testers sort through these infinite sets to
arrive at the best possible test data adequacy
criteria, which are meant to adequately and
economically represent any of the infinite
sets. “Best” and “adequately” are subjec-
tive; testers typically seek the set that will
find the most bugs. (High and low bug
counts, and their interpretation, are dis-
cussed later). Many users and quality assur-
ance professionals are interested in having
testers evaluate typical use scenarios—
things that will occur most often in the field.
Such testing ensures that the software works
as specified and that the most frequently
occurring bugs will have been detected.

For example, consider the text editor
example again. To test typical use, we
would focus on editing and formatting since
that is what real users do most. However, to
find bugs, a more likely place to look is in
the harder-to-code features like figure draw-
ing and table editing.

Execution path test criteria
Test data adequacy criteria concentrate

on either execution path coverage or input
sequence coverage but rarely both. The
most common execution path selection cri-
teria focus on paths that cover control struc-
tures. For example,

■ Select a set of tests that cause each source
statement to be executed at least once.

■ Select a set of tests that cause each
branching structure (If , Case, While, and
so on) to be evaluated with each of its
possible values.

However, control flow is only one aspect of
the source code. What software actually
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“Best” and
“adequately”

are subjective;
testers 

typically seek
the set that 
will find the
most bugs.



does is move data from one location to
another. The dataflow family of test data
adequacy criteria3 describe coverage of this
data. For example,

■ Select a set of tests that cause each data
structure to be initialized and then subse-
quently used.

Finally, fault seeding, which claims more
attention from researchers than practition-
ers, is interesting.1 In this method, errors are
intentionally inserted (seeded) into the
source code. Test scenarios are then de-
signed to find those errors. Ideally, by find-
ing seeded errors, the tester will also find
real errors. Thus, a criterion like the follow-
ing is possible:

■ Select a set of tests that expose each of
the seeded faults.

Input domain test criteria
Criteria for input domain coverage range

from simple coverage of an interface to
more complex statistical measurement. 

■ Select a set of tests that contain each
physical input.

■ Select a set of tests that cause each inter-
face control (window, menu, button, and
so on) to be stimulated.

The discrimination criterion4 requires
random selection of input sequences until
they statistically represent the entire infinite
input domain.

■ Select a set of tests that have the same
statistical properties as the entire input
domain.

■ Select a set of paths that are likely to be
executed by a typical user.

Summary
Testing researchers are actively studying

algorithms to select minimal test sets that
satisfy criteria for execution paths and input
domains. Most researchers would agree that
it is prudent to use multiple criteria when
making important release decisions. Ex-
periments comparing test data adequacy
criteria are needed, as are new criteria.
However, for the present, testers should be
aware which criteria are built into their
methodology and understand the inherent

limitations of these criteria when they
report results.

We’ll revisit test data adequacy criteria in
the fourth phase, test measurement, because
the criteria also serve as measures of test
completeness.

Phase 3: Running and Evaluating
Test Scenarios

Having identified suitable tests, testers
convert them to executable form, often as
code, so that the resulting test scenarios
simulate typical user action. Because manu-
ally applying test scenarios is labor-inten-
sive and error-prone, testers try to auto-
mate the test scenarios as much as possible.
In many environments, automated applica-
tion of inputs through code that simulates
users is possible, and tools are available to
help.

Complete automation requires simula-
tion of each input source and output desti-
nation of the entire operational environ-
ment. Testers often include data-gathering
code in the simulated environment as test
hooks or asserts. This code provides infor-
mation about internal variables, object
properties, and so forth. These hooks are
removed when the software is released, but
during test scenario execution they provide
valuable information that helps testers iden-
tify failures and isolate faults.

Scenario evaluation, the second part of
this phase, is easily stated but difficult to do
(much less automate). Evaluation involves
the comparison of the software’s actual out-
put, resulting from test scenario execution,
to its expected output as documented by a
specification. The specification is assumed
correct; deviations are failures.

In practice, this comparison is difficult to
achieve. Theoretically, comparison (to deter-
mine equivalence) of two arbitrary, Turing-
computable functions is unsolvable. Re-
turning to the text editor example, if the out-
put is supposed to be “highlight a misspelled
word,” how can we determine that each
instance of misspelling has been detected?
Such difficulty is the reason why the actual-
versus-expected output comparison is usually
performed by a human oracle: a tester who
visually monitors screen output and painstak-
ingly analyzes output data. (See the “Testing
Terminology” sidebar for an explanation of
other common testing terms).

How much
retesting of
version n is
necessary

using the tests
that were run

against version
n – 1?

7 6 I E E E  S O F T W A R E J a n u a r y / F e b r u a r y  2 0 0 0



Two approaches to evaluating your test
In dealing with the problems of test evalu-

ation, researchers are pursuing two approach-
es: formalism, and embedded test code.

Formalism chiefly involves the hard
work of formalizing the way specifications
are written and the way that designs and
code are derived from them.5 Both object-
oriented and structured development con-
tain mechanisms for formally expressing
specifications to simplify the task of com-
paring expected and actual behavior.
Industry has typically shied away from for-
mal methods; nonetheless, a good specifica-
tion, even an informal one, is still extremely
helpful. Without a specification, testers are
likely to find only the most obvious bugs.
Furthermore, the absence of a specification
wastes significant time when testers report
unspecified features as bugs.

There are essentially two types of embed-
ded test code. The simplest type is test code
that exposes certain internal data objects or
states that make it easier for an external
oracle to judge correctness. As implement-
ed, such functionality is invisible to users.
Testers can access test code results through,
for example, a test API or a debugger.

A more complex type of embedded code
features self-testing programs.6 Sometimes
this involves coding multiple solutions to the
problem and having one solution check the
other, or writing inverse routines that undo
each operation. If an operation is performed
and then undone, the resulting software
state should be equivalent to its preopera-
tional state. In this situation, the oracle is
not perfect; there could be a bug in both
operations where each bug masks the other.

Regression testing
After testers submit successfully repro-

duced failures to development, developers
generally create a new version of the soft-
ware (in which the bug has been supposed-
ly removed). Testing progresses through
subsequent software versions until one is
determined to be fit for release. The ques-
tion is, how much retesting (called regres-
sion testing) of version n is necessary using
the tests that were run against version n – 1?

Any specific fix can (a) fix only the prob-
lem that was reported, (b) fail to fix the
problem, (c) fix the problem but break
something that was previously working, or
(d) fail to fix the problem and break some-

thing else. Given these possibilities, it would
seem prudent to rerun every test from ver-
sion n – 1 on version n before testing any-
thing new, although such a practice is gen-
erally cost-prohibitive.7 Moreover, new soft-
ware versions often feature extensive new
functionality, in addition to the bug fixes, so
the regression tests would take time away
from testing new code. To save resources,
then, testers work closely with developers to
prioritize and minimize regression tests.

Another drawback to regression testing is
that these tests can (temporarily) alter the
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Testing Terminology

Software testing is often equated to finding bugs. However, test scenarios that
do not reveal failures are also informative, so I offer this definition:

Software testing is the process of executing a software system to determine
whether it matches its specification and executes in its intended environment.

The fact that the system is being executed distinguishes testing from code
reviews, in which uncompiled source code is read and analyzed statically (usu-
ally by developers). Testing, on the other hand, requires a running executable. 

A specification is a crucial artifact to support testing. It defines correct behavior
so that incorrect behavior is easier to identify. Incorrect behavior is a software
failure. Failures are caused by faults in the source code, which are often referred
to as defects or bugs. The oracle compares actual output with specified output to
identify failures. Generally, the code developer diagnoses the causal fault. 

Software can also fail by not satisfying environmental constraints that fall out-
side the specification. For example, if the code takes too much memory, executes
too slowly, or if the product works on one operating system but not another,
these are considered failures.

Software testing is classified according to the manner in which testers perform
the first two phases of the testing process. The scope of the first phase, model-
ing the software’s environment, determines whether the tester is doing unit, inte-
gration, or system testing. 

Unit testing tests individual software components or a collection of compo-
nents. Testers define the input domain for the units in question and ignore the
rest of the system. Unit testing sometimes requires the construction of throwaway
driver code and stubs and is often performed in a debugger.

Integration testing tests multiple components that have each received prior
and separate unit testing. In general, the focus is on the subset of the domain
that represents communication between the components.

System testing tests a collection of components that constitutes a deliverable
product. Usually, the entire domain must be considered to satisfy the criteria for
a system test.

The second phase of testing, test selection, determines what type of testing is
being done. There are two main types:

Functional testing requires the selection of test scenarios without regard to
source code structure. Thus, test selection methods and test data adequacy cri-
teria, described in the main text, must be based on attributes of the specification
or operational environment and not on attributes of the code or data structures.
Functional testing is also called specification-based testing, behavioral testing,
and black-box testing.

Structural testing requires that inputs be based solely on the structure of the
source code or its data structures. Structural testing is also called code-based
testing and white-box testing.



purpose of the test data adequacy criteria
selected in the earlier test selection phase.
When performing regression tests, testers seek
only to show the absence of a fault and to
force the application to exhibit specific behav-
ior. The outcome is that the test data adequa-
cy criteria, which until now guided test selec-
tion, are ignored. Instead, testers must ensure
that a reliable fix to the code has been made.

Related concerns
Ideally, developers will write code with

testing in mind. If the code will be hard to test
and verify, then it should be rewritten to make
it more testable. Likewise, a testing method-
ology should be judged by its contribution to
solving automation and oracle problems. Too
many methodologies provide little guidance
in either area.

Another concern for testers while running
and verifying tests is the coordination of de-
bugging activity with developers. As failures
are identified by testers and diagnosed by
developers, two issues arise: failure repro-
duction and test scenario re-execution.

Failure reproduction is not the no-brainer
it might seem. The obvious answer is, of
course, to simply rerun the offending test and
observe the errant behavior again, although
rerunning a test does not guarantee that the
exact same conditions will be created.
Scenario re-execution requires that we know
the exact state of the operating system and
any companion software—for example,
client–server applications would require
reproduction of the conditions surrounding
both the client and the server. Additionally,
we must know the state of test automation,
peripheral devices, and any other background
application running locally or over the net-
work that could affect the application being
tested. It is no wonder that one of the most
commonly heard phrases in a testing lab is,
“Well, it was behaving differently before….”

Phase 4: Measuring Testing
Progress

Suppose I am a tester and one day my
manager comes to me and asks, “What’s the
status of your testing?” Testers are often
asked this question but are not well
equipped to answer it. The reason is that the
state of the practice in test measurement is to
count things. We count the number of inputs
we’ve applied, the percentage of code we’ve

covered, and the number of times we’ve
invoked the application. We count the num-
ber of times we’ve terminated the applica-
tion successfully, the number of failures we
found, and so on. Interpreting such counts is
difficult—is finding lots of failures good
news or bad? The answer could be either. A
high bug count could mean that testing was
thorough and very few bugs remain. Or, it
could mean that the software simply has lots
of bugs and, even though many have been
exposed, lots of them remain.

Since counting measures yield very little
insight about the progress of testing, many
testers augment this data by answering
questions designed to ascertain structural
and functional testing completeness. For
example, to check for structural complete-
ness, testers might ask these questions:

■ Have I tested for common programming
errors?8

■ Have I exercised all of the source code?1

■ Have I forced all the internal data to be
initialized and used?3

■ Have I found all seeded errors?1

To check for functional completeness,
testers might ask these questions:

■ Have I thought through the ways in
which the software can fail and selected
tests that show it doesn’t?9

■ Have I applied all the inputs?1

■ Have I completely explored the state
space of the software?4

■ Have I run all the scenarios that I expect
a user to execute?10

These questions—essentially, test data
adequacy criteria—are helpful to testers;
however, determining when to stop testing,
determining when a product is ready to
release, is more complex. Testers want
quantitative measures of the number of
bugs left in the software and of the proba-
bility that any of these bugs will be discov-
ered in the field. If testers can achieve such
a measure, they know to stop testing. We
can approach the quantitative problem
structurally and functionally.

Testability
From a structural standpoint, Jeffrey

Voas has proposed testability11 as a way to
determine an application’s testing complexi-

If the code will
be hard to test
and verify, it

should be
rewritten to
make it more

testable.
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ty. The idea that the number of lines of code
determines the software’s testing difficulty is
obsolete; the issue is much murkier. This is
where testability comes into play. If a prod-
uct has high testability, it is easy to test and,
consequently, easier to find bugs in. We can
then monitor testing and observe that
because bugs are fewer, it is unlikely that
many undiscovered ones exist. Low testabil-
ity would require many more tests to draw
the same conclusions; we would expect that
bugs are harder to find. Testability is a com-
pelling concept but in its infancy; no data on
its predictive ability has yet been published.

Reliability models
How long will the software run before it

fails? How expensive will the software be to
maintain? It is certainly better to find this
out while you still have the software in your
testing lab.

From a functional standpoint, reliability
models10—mathematical models of test sce-
narios and failure data that attempt to pre-
dict future failure patterns based on past
data—are well established. These models
thus attempt to predict how software will
behave in the field based on how it behaved
during testing. To accomplish this, most
reliability models require the specification
of an operational profile, a description of
how users are expected to apply inputs. To
compute the probability of failure, these
models make some assumptions about the
underlying probability distribution that
governs failure occurrences. Researchers
and practitioners alike have expressed skep-
ticism that such profiles can be accurately
assembled. Furthermore, the assumptions
made by common reliability models have
not been theoretically or experimentally
verified except in specific application
domains. Nevertheless, successful case stud-
ies have shown these models to be credible.

S oftware companies face serious
challenges in testing their products,
and these challenges are growing

bigger as software grows more complex.
The first and most important thing to be
done is to recognize the complex nature of
testing and take it seriously. My advice:
Hire the smartest people you can find, help
them get the tools and training they need to
learn their craft, and listen to them when

they tell you about the quality of your soft-
ware. Ignoring them might be the most
expensive mistake you ever make.

Testing researchers likewise face chal-
lenges. Software companies are anxious to
fund good research ideas, but the demand
for more practical, less academic work is
strong. The time to tie academic research to
real industry products is now. We’ll all come
out winners.
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