
Object-Oriented
IntegKItCO~

0 bject-oriented software devel-
opment raises important test-
ing issues. Many of these stem
from attempts to directly

apply theoretical constructs and tech-
niques of traditional software develop
ment and testing to object-oriented
software. We examine this traditional
heritage here, with special emphasis
on assumptions and practices that
need to be modified or replaced.

We identify five levels of object-
oriented testing; four of these map
nicely into the commonly accepted
unit, integration, and system levels of
traditional software testing.
(Placement of the remaining level is
primarily a management considera-
tion.) We also identify two new testing
constructs and a directed graph nota-
tion that helps formalize object-orient-
ed integration testing. These are
illustrated with an object-oriented for-
mulation of an automated teller
machine (ATM) system. The source
code (ObjectiveC)  for this system is
available from the authors.

We begin with an important dis-
tinction: structure vs. behavior. Most
of the popular notations used in soft-
ware development (E/R models, data
flow diagrams, structure charts,
PDLs,  and so on) portray software
structure: the components, relation-
ships among these, the interfaces,
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control and dataflow, and so on. Such
information is certainly needed by
software developers, but it is only
moderately useful to testers. For sim-
ple programs, we can understand
behavior in terms of structure, but
there is a relatively low threshold of
program complexity beyond which
this derivation becomes untenable.
Software testing is fundamentally
concerned with behavior (what it
does), and not structure (what it is).
Customers understand software in
terms of its behavior, not its struc-
ture. The object-oriented testing
constructs we introduce here are de-
liberately behavioral rather than
structural .

To provide a context for object-
oriented integration testing, we high-
light the traditional software (and sys-
tem) testing notions that have special
implications for object-oriented soft-
ware testing. Traditional software is

l written in an imperative language
l described by a functional decom-
position
l developed in a waterfall life cycle
l separated into three levels of test-
ing

Since these often do not apply di-
rectly to object-oriented software,
they represent latent assumptions
which must be revisited.

Most software developers use an
imperative language, in which the
order of source statements deter-
mines the execution order of com-
piled object instructions. The familiar
languages (Fortran, Cobol, C, Pascal,
Ada, and assembly languages) are all
imperative, as opposed to declarative
languages (e.g., Prolog), in which the
source statement order has little to do
with execution order. Imperative lan-
guages are so widely used (and for so
long), they have become “natural” to
most programmers. All of structured
programming, with the basic control
structures of sequence, selection, and
repetition, and the single-entry,
single-exit precept, is directed at im-
perative languages.

Imperative languages lend them-
selves to a rigorous description as a
directed graph, or program graph
[S],  in which nodes are statements (or
statement fragments) and edges rep-
resent control flow sequence. From
this starting point, several graph

theory-based testing constructs have
been defined: DD-Paths, define/
reference nodes, definition clear
paths, and program slices, to name a
few. These all help the tester give a
more accurate description of what is
being tested, and all lead to useful test
coverage metrics.

In contrast, declarative languages
suppress sequentiality, thereby sacri-
ficing the descriptive benefits of di-
rected graphs. (On the other hand,
declarative languages are naturally
represented by more formal nota-
tions, such as the predicate or the
lambda calculus, which in turn open
possibilities of formal proofs of cor-
rectness.)

The event-driven nature of object-
oriented systems forces a “declarative
spirit” on testing. This is noteident
at the unit level (most object-oriented
programming languages are impera-
tive), but it is pronounced at the inte-
gration and system levels.

Functional decomposition is the
natural extension of the systems anal-
ysis introduced as a problem-solving
technique by the U.S. Army in the
1930s  [  11. Known equally often by its
synonym, top-down development,
functional decomposition can be ei-
ther prescriptive or descriptive. The
prescriptive view (which is enforced
in functional languages such as Lisp)
demands that software development
begins “at the top,” and proceeds by
subdividing functionality into succes-
sively lower levels of detail, resulting
in a hierarchy, or functional decom-
position tree.

The descriptive view is more toler-
ant of the way people work, often flit-
ting across levels of abstraction in
seemingly random orders [5],  and
reinforcing analysis with synthesis, a
symbiosis found in most other engi-
neering disciplines. The end result is
the same: a tree-like decomposition
of system functionality into compo-
nents that exhibit several senses of
hierarchy: levels of abstraction, lexi-
cal inclusion, information hiding, and
corresponding data structures which
may have parallel decompositions
into various user-defined types.

Functional decomposition has
been the mainstay of software devel-
opment since the 195Os,  partly be-
cause it fits so well with other hier-
archies: organizational structures,

program language packaging, hard-
ware packaging (system, frame, rack,
card,. . .) and the fan-out of activities
in the waterfall model of software
development. Despite these reinforc-
ing morphisms, functional decompo-
sition has its vulnerable points. De-
composing a problem so that exist-
ing components (to be reused) ap-
pear in the tree is tricky, and the de-
composition criteria used have an
enormous impact on the resulting
system. The rival strategy, composi-
tion, has been all but lost in the struc-
tural revolution.

Functional decomposition has
deep implications for testing: first, it
emphasizes levels of abstraction
(hence, levels of testing), and second,
it creates questions of integration
order (top-down or bottom-up). Most
important (and insidious) is that it
stresses structure over behavior.

The well-known waterfall model of
software development is sometimes
depicted as a “V”  in which the de-
velopment phases (requirements spe-
cification, preliminary design, and
detailed design) are at levels corre-
sponding to system, integration, and
unit testing. The sequential nature of
the waterfall model predisposes a
bottom-up testing approach in which
unit testing produces separately
tested components which are eventu-
ally integrated to support system test-
ing. The integration portion of this is
driven by the functional decomposi-
tion tree, where there is another top-
down or bottom-up question. Which-
ever alternative is chosen, it is impor-
tant to note that the goal is to fit the
units together into the functional
decomposition tree. Thus the struc-
ture of the system is the goal, not the
behavior.

Since the mid-1980s, the waterfall
model has been critized for several
fundamental defects [l].  Most of
these pertain to the development side
of the model, and to project manage-
ment considerations, rather than to
testing. We believe that the prefer-
ence of structure over behavior as the
goal of integration testing will  be rec-
ognized as yet another shortcoming
of the waterfall model.

The three widely accepted levels of
testing-unit, integration, and sys-
tem need some clarification. There
are several definitions of a unit:



control and dataflow, and so on. Such
information is certainly needed by
software developers, but it is only
moderately useful to testers. For sim-
ple programs, we can understand
behavior in terms of structure, but
there is a relatively low threshold of
program complexity beyond which
this derivation becomes untenable.
Software testing is fundamentally
concerned with behavior (what it
does), and not structure (what it is).
Customers understand software in
terms of its behavior, not its struc-
ture. The object-oriented testing
constructs we introduce here are de-
liberately behavioral rather than
structural .

To provide a context for object-
oriented integration testing, we high-
light the traditional software (and sys-
tem) testing notions that have special
implications for object-oriented soft-
ware testing. Traditional software is

l written in an imperative language
l described by a functional decom-
position
l developed in a waterfall life cycle
l separated into three levels of test-
ing

Since these often do not apply di-
rectly to object-oriented software,
they represent latent assumptions
which must be revisited.

Most software developers use an
imperative language, in which the
order of source statements deter-
mines the execution order of com-
piled object instructions. The familiar
languages (Fortran, Cobol, C, Pascal,
Ada, and assembly languages) are all
imperative, as opposed to declarative
languages (e.g., Prolog), in which the
source statement order has little to do
with execution order. Imperative lan-
guages are so widely used (and for so
long), they have become “natural” to
most programmers. All of structured
programming, with the basic control
structures of sequence, selection, and
repetition, and the single-entry,
single-exit precept, is directed at im-
perative languages.

Imperative languages lend them-
selves to a rigorous description as a
directed graph, or program graph
[S],  in which nodes are statements (or
statement fragments) and edges rep-
resent control flow sequence. From
this starting point, several graph

theory-based testing constructs have
been defined: DD-Paths, define/
reference nodes, definition clear
paths, and program slices, to name a
few. These all help the tester give a
more accurate description of what is
being tested, and all lead to useful test
coverage metrics.

In contrast, declarative languages
suppress sequentiality, thereby sacri-
ficing the descriptive benefits of di-
rected graphs. (On the other hand,
declarative languages are naturally
represented by more formal nota-
tions, such as the predicate or the
lambda calculus, which in turn open
possibilities of formal proofs of cor-
rectness.)

The event-driven nature of object-
oriented systems forces a “declarative
spirit” on testing. This is notqident
at the unit level (most object-oriented
programming languages are impera-
tive), but it is pronounced at the inte-
gration and system levels.

Functional decomposition is the
natural extension of the systems anal-
ysis introduced as a problem-solving
technique by the U.S. Army in the
1930s  [  11. Known equally often by its
synonym, top-down development,
functional decomposition can be ei-
ther prescriptive or descriptive. The
prescriptive view (which is enforced
in functional languages such as Lisp)
demands that software development
begins “at the top,” and proceeds by
subdividing functionality into succes-
sively lower levels of detail, resulting
in a hierarchy, or functional decom-
position tree.

The descriptive view is more toler-
ant of the way people work, often flit-
ting across levels of abstraction in
seemingly random orders [5],  and
reinforcing analysis with synthesis, a
symbiosis found in most other engi-
neering disciplines. The end result is
the same: a tree-like decomposition
of system functionality into compo-
nents that exhibit several senses of
hierarchy: levels of abstraction, lexi-
cal inclusion, information hiding, and
corresponding data structures which
may have parallel decompositions
into various user-defined types.

Functional decomposition has
been the mainstay of software devel-
opment since the 1950s  partly be-
cause it fits so well with other hier-
archies: organizational structures,

program language packaging, hard-
ware packaging (system, frame, rack,
card,. .) and the fan-out of activities
in the waterfall model of software
development. Despite these reinforc-
ing morphisms, functional decompo-
sition has its vulnerable points. De-
composing a problem so that exist-
ing components (to be reused) ap-
pear in the tree is tricky, and the de-
composition criteria used have an
enormous impact on the resulting
system. The rival strategy, composi-
tion, has been all but lost in the struc-
tural revolution.

Functional decomposition has
deep implications for testing: first, it
emphasizes levels of abstraction
(hence, levels of testing), and second,
it creates questions of integration
order (top-down or bottom-up). Most
important (and insidious) is that it
stresses structure over behavior.

The well-known waterfall model of
software development is sometimes
depicted as a “V” in which the de-
velopment phases (requirements spe-
cification, preliminary design, and
detailed design) are at levels corre-
sponding to system, integration, and
unit testing. The sequential nature of
the waterfall model predisposes a
bottom-up testing approach in which
unit testing produces separately
tested components which are eventu-
ally integrated to support system test-
ing. The integration portion of this is
driven by the functional decomposi-
tion tree, where there is another top-
down or bottom-up question. Which-
ever alternative is chosen, it is impor-
tant to note that the goal is to lit the
units together into the functional
decomposition tree. Thus the struc-
ture of the system is the goal, not the
behavior.

Since the mid-1980s, the waterfall
model has been critized for several
fundamental defects [l].  Most of
these pertain to the development side
of the model, and to project manage-
ment considerations, rather than to
testing. We believe that the prefer-
ence of structure over behavior as the
goal of integration testing will  be rec-
ognized as yet another shortcoming
of the waterfall model.

The three widely accepted levels of
testing-unit, integration, and sys-
tem need some clarification. There
are several definitions of a unit:



l a single, cohesive function
l a function which, when coded, fits
on one page
l the smallest separately compilable
segment of code
l the amount of code that can be
written in 4 to 40  hours
l a task in a work breakdown struc-
ture
l code that is assigned to one per-
son
l code that one person designs,
codes, and tests in a three-month
period

Curiously, many organizations that
specifically conduct unit testing have
not chosen their definition of a soft-
ware unit. However defined, a unit is
tested “by itself,” with adjacent soft-
ware units being replaced by stubs
and drivers to emulate inputs and

Figure 1. Directed-graph repre-
sentation of the object network.
Three Method-Message Paths
(MM-Paths 1.2, and 31,  and two
Atomic System Functions (ASFs  4
and 13) are shown.

outputs. The goal of unit testing is to
verify that, taken by itself, the unit
functions correctly. (Another view is
to see how the unit functions, assum-
ing everything else is perfect.)

Once units are separately tested,
they are integrated together. Integra-
tion testing is the least well under-
stood of the three levels. Part of this
can be seen in the symmetries with
the waterfall phases: unit testing with
detai led design,  integrat ion test ing
with preliminary design, and system
testing with requirements specifica-
tion. These symmetries are comfort-
able in that the basis for test case
identification is clear. Of these, the
unit level is best understood (both in
terms of detailed design and unit test-
ing), followed by the system level.
The “leftovers” are given to prelimi-
nary design and integration testing.

Since the mid-1970s  various mod-
ule interconnect languages have been
proposed [3] as descriptions of the
information to be produced by pre-
liminary design. In general, this in-
cludes the levels of functional decom-
position and the major interfaces
among components at  these levels.
This forces the goal of integration

testing to address these primarily
structural  considerations.  Here are
some frequently used views:

l the gradual replacement of stubs
and drivers by separately tested
units
l pairwise  integration, in which
each unit is integrated with its adja-
cent units
l bottom-up integration guided by
the functional decomposition tree
l top-down integration guided by
the functional decomposition tree
l “big bang” integration where all
units are thrown together at once

The common thread (and deli-
ciency) among these possibilities is
that they stress structure and inter-
faces, rather than behavior. They all
presume that correct behavior is
guaranteed by correct structure and
interfaces.

Where does integration test ing
end and system testing begin? Dis-
tinctions based on waterfall  phases
beg the question, because it is equally
difficult  to decide where require-
ments specification ends and prelimi-
nary design begins. We offer an ex-
plicit  distinction:  system testing is



The declaratke  aspect  a* ob ject -or iented
soitware  lies primarily in its

event-driven nature. Dynamic binding also creates an

indefiniteness that resembles that of declarative programs.
J

conducted exclusively in terms of
inputs and outputs that are visible at
the port boundary of a system. A sys-
tem tester can only have access to
those port events that are available to
the customer/user. In contrast, inte-
gration testing can access memory
events and conditions that are invisi-
ble at the system level. Another place
to see this demarcation is when a sys-
tem is developed on one platform to
he delivered on a different target
platform. System testing can only
occur on the target platform, while
integration testing could occur on the
development machine.

To  the extent that object-oriented
software is declarative, much of the
descriptive power of graph theory-
based structural testing techniques
will not he applicable. Within an ob-
ject,  individual methods remain im-
perative. All object-oriented lan-
guages return control to the calling
object when a message is “finished.”
(We consider a message to he the
combination of a receiver object, a
method name, and, optionally,
method arguments.) The declarative
aspect of object-oriented software lies
primarily in its event-driven nature.
Dynamic binding also creates an in-
definiteness that resembles that of
declarative programs.

Because the concept of a main pro-
gram is minimized, there is no clearly
defined integration structure. Thus
there is no decomposition tree to
impose the question of integration
testing order of objects. We see this as
an advantage for object-oriented
integration testing; it is no Iongel
natural to focus on structural testing
orders.

The shift to composition (especially
when reuse occurs) adds another
dimension of difficulty to object-
oriented software testing: it is impos-
sible to ever know the full set of “adja-
cent” objects with which a given oh-
ject  may he composed. Taken by

themselves, two objects may be cor-
rect; yet when they are composed,
errors might result. We are reminded
of M.C.  Rscher’s paradoxical draw-
ings which center on deliberate er-
rors of composition. The usual re-
sponse from the object-oriented
community is that if the units (ob-
jects) are carefully defined and tested,
any composition will work. This was
the hope of information hiding as a
decomposition criterion in traditional
software development. We know
from experience that this fails.  We
know also that unit testing can nevel
reveal integration-level problems.

Object-oriented software develop-
ment, especially in terms ofcomposi-
tion and reuse, usually occurs in a
non-waterfall development life cycle;
most commonly one based on rapid
prototyping, perhaps in conjunction
with an incremental approach. The
rival models (of waterf:all)  all have
composition as their fundamental
underlying strategy, and all make no
presumptions about the complete-
ness goal that was so central to water-
f&It-based  practice. We expect to see
movement in the direction of opera-
tional specification, likely beginning
with some form of an executable
specification. When requirements
specilications  are expressed in this
way, they create a new problem: the
need to make a dynamic-to-static
transition. An essentially dynamic,
executable specification must some-
how lead to static implementation
components. This is difficult with tra-
ditional languages; the transition is
eased by the inherent dynamism of
the object-oriented paradigm.

The final implication of traditional
software development IS  that the lev-
els of testing need clarification for
object-oriented software. Two levels
are clear: object  methods are units,
and object-oriented unit testing is
simply the testing of these methods.
‘l‘raditional  functional and structural

testing techniques are fully applicable
to  this level. At the system level,
thread-based testing is completely
c.ompatible with object-oriented soft-
ware. The notion of a thread [4] is a
natural construct for system-level
resting. Here are several views of a
thread:

l a sequence of machine instruc-
tions
l a sequence of source instructions
l a scenario of normal usage
l a system-level test case
l a stimulus/response pair (per [2])
l the behavior that results from a
sequence of system-level inputs
l an interleaved sequence of system
inputs (stimuli) and outputs (re-
sponses)
l a sequence of transitions in a
state machine description of the sys-
tem

Threads exist independently of
their potential representations. We
can interpret a thread to he a se-
quence of method executions linked
by messages in the object network.
This will follow from the constructs.

Constructs for Object-Oriented
Integration Testing
Taken together, the implications of
traditional testing for object-oriented
integration testing require an appro-
priate construct for the integration
level. This construct should he com-
patible with composition, avoid the
inappropriate structure-based goals
of traditional integration testing, sup-
port the declarative aspect of object
integration, and he clearly distinct
from the unit- and system-level con-
structs.

We postulate five distinct levels of
object-oriented testing:

l a method
l message quiescence
l event quiescence
l thread testing
l thread interaction testing



Taken together; *he implCcatCons  OF  tradltiional
test ing  #or ob ject -or iented  integrat ion

testing require an

An individual method is pro-
grammed in an imperative language
and performs a single, cohesive func-
tion. As such, it corresponds to the
unit level of traditional software test-
ing, and both the traditional func-
tional and structural techniques are
applicable. As noted earlier, both
thread and thread interaction testing
are at the system level. To address the
two remaining levels, we note that for
both cases, method executions are
linked by messages, and quiessence
provides natural endpoints. This is
shown by the object network in Fig-
ure 1, in which nodes (rectangles) are
methods and edges (dashed lines) are
messages. Objects (circles) are not
directly represented in the graph;
they show related collections of
methods.

Defini t ion: A Method/Message
Path (MM-Path) is a sequence of
m e t h o d executions linked by
messages.

An MM-Path starts with a method
and ends when it reaches a method
which does not issue any messages of
its own. In terms of an executing pro-
cess, we call this point message quies-
cence. Since MM-Paths are composed
of linked method-message pairs in an
object network, they interleave and
branch off from other MM-Paths. We
chose this name to be similar to the
DD-Path (decision-to-decision path)
construct of traditional structured
unit testing; MM-Paths provide anal-
ogous descriptive capabilities to ob-
ject-oriented integration testing. Fig-
ure 1 shows three MM-Paths (labeled
1, 2, and 3).

The second construct reflects the
event-driven nature of object-
oriented software. Execution of ob-
ject-oriented software begins with an
event, which we refer to as a port
input event. This system-level input
triggers the method-message se-
quence of an MM-Path. This initial
MM-Path may trigger other MM-
Paths. Finally, the sequence of MM-

a#@-opm’ate  construct for the integration hel.

Paths should end with some system-
level response (a port output event).
When such a sequence ends, the sys-
tem is quiescent, that is, the system is
waiting for another port input event
that initiates further processing. This
fits well with the notion of a reactive
system [6] that responds to events in
its environment, and with the notion
of a stimulus/response pair that is
central to the SREM requirements
specification technique [2].  Stimulus/
response pairs are threads that begin
with a stimulus (a port input event),
traverse one or more MM-Paths, and
culminate with one of several possible
port output events. In the case of
event-driven, GUI applications,
poorly written software may not pro-
vide feedback for a user-induced
input event, in which case the ending
port event is null.

Definition. An Atomic System
Function (ASF) is an input port event,
followed by a set of MM-Paths, and
terminated by an output port event.

An atomic system function is an
elemental function visible at the sys-
tem level. As such, ASFs  constitute the
point at which integration and system
testing meet, which results in a more
seamless flow between these two
forms of testing. The output port
event which defines the end of an
ASF may have different values (in-
cluding null) for multiple executions
of the same ASF. Figure 1 shows two
ASFs  (labeled A and B at the start and
stop points). ASF A is composed of a
single MM-Path (1). ASF B is com-
posed of MM-Paths 2 and 3.

Example
As a concrete example of the object-
oriented testing constructs we have
proposed, consider an automated
teller machine (ATM) system. All
ATM systems must deal with the
entry of a customer’s personal identi-
fication number (PIN), which is
known only by the central bank and
the customer. The customer’s ATM

card is encoded with a personal ac-
count number (PAN) and is read by
the card reader device in the ATM to
obtain an expected PIN from the
bank. A customer has three chances
to enter the correct PIN. Once a cor-
rect PIN has been entered, the user
sees a screen requesting the transac-
tion type. Otherwise a screen advises
the customer that the ATM card will
not be returned, and no access to
ATM functions is provided.

The following steps occur after the
user enters a card:

1. A screen requesting PIN entry is
displayed
2. An interleaved sequence of digit
key touches with audible and visual
feedback
3. The possibility of cancellation by
the customer before the full PIN is
entered
4. Interdigit time-outs, followed by
screens asking if the user needs
more time
5. Entry of a yes/no response to the
time-out screen
6. A system disposition (valid PIN
entered or card retained)

A finite-state machine (FSM) de-
scription of PIN entry (to appear in
[7])  contains an upper-level FSM with
8 states, 10 transitions, and 4 paths.
Three of these states are decomposed
to a lower-level FSM that contains 9
states, 18 transitions, and 14 paths,
resulting in a cyclomatic complexity
of 13.

Classes for ATM PIN Entry. We
have implemented an ATM simulator
on NEXTSTEP  using Objective C.
We use this system as a means to
ground our work in real code, and as
an illustration of our object-oriented
testing constructs. The class hierar-
chy of the ATM simulator is shown in
Figure 2, which shows only the classes
for the problem domain; we used the 1
standard NeXT AppKit classes for
the graphical interface objects.

Identifying MM-Paths. Consider

I
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the fbllowing four sequences of he-
havior  visible at the svstem level of
the ATM:

1. Entry of a tligit
I’. Entry ot’a PIN
3. A  simple transaction: PIN entry,
select transaction tvpe,  present ac-
count details. conduct the opera-
lion, report restllts
4. .\n  ATM  session, containing two
or more  simple  transactions

Digit entry (behavior sequence I) is
an example  of a minimal M.LI-Path
(see Figure 3). It begins rvith  a port
input rve11l  (kev touch) rvhich acts as
a  lm!ss;lgc  t o  thr  NmlKe~patl:#et

KeyEvents method. It  completes Figure 2. The class hierarchy for
(reaches message quiescence) with a the ATM simulator
message to t h e  par.seKevEvent
method to decode the key.

PIN Entry (behavior sequence 2) is
an example of an atomic system func-

tion. It is composed of six MM-Paths,
an input port event, and several pos-

sible output port events. Figure 4
shows a mainline portion, in which
the correct PIN is entered on the first
attempt; several error cases are not
shown. The objects in these MM-
Paths know about the length ofa PIN,
the number of bad entry attempts,
the P;\N/PIN  fbr an account, which
hank cards are members of the ;ITbls

net\\xxk.  and so fbrth. For clar i ty.
Figure 4 has been simplitied  hy  re-
moving the Timer object, and hence
the PIN entry time-out. The MM-
Path components ot’  this  .ISF are
listed in terms of 0bject:method  sets.

It is instructive to consider where
the longest MM-Path in this ASF
should end: Screen:sho\%.>lessage  or
NumKe~pad:parseKeyEvent; The
definition of the ASF  makes this
choice unamlxguous.  since .-\SFs  are
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KryEwrlt  wt’re  ch0w1  ;,s  the mtl of‘ i~iht;IIlw  v,irial)les tlctinetl in tlte  class.
the PIN  Entr!,  ASF,  the system  w0~1lcl Sirlcc ever\  cI;lss  inherits tb)trl  .lt It‘;lst
not he in ;I  quiescent  state  ;tt  the c*ntl OIIC sUl”lx.l;lss  (the  Objm claasl.  tl1c

oF the .\SF. Figure j ~umtn;lGes  the initi~ili/atic~n  Inethotl  ora c.la5s  \ilOLlltl

PIN  Entry  .\SF. tirst  invoke the initialimtion  cotle it
‘l‘he sirnpltf  ttxns;~ctioti  (txhxvicw inherits. then perfom the initialim-

sequence 3) is ;I  thread (b hich can 1x2 rioti  slxcitic  to the class, thtls e’IIsuI‘-
se:6‘11  ;IS  a secl~~rncr  ot ASFs).  xnd the ing 1li;tt  initidi/ntion  oc‘c11r\ i n  t h e
ATbI  session (hehnvior  qL~rnce  4)  is ortler  of inheritance. 7‘he  error  that
a SeqLlence of  wveral  t11lYatls.  ;\s  .I11 integxtion  testing discovrrrtl  xvxs 3
orgmization  for testing, the .-\SF  Ir\,el lack OF  invocation of the superclass
tixusrs  on interaction ~linotl~  objects: init tnethocl in the .NIII~I<K~JxI~~ init
the thrtxl  led  entails interactions method. .\s 3 result, the integer vwi-
among  ASFb:  and the tinal level Figure3.  The Digit Entry  MM-Path able hitlerData  ~2s n o t  initi:tlizrcl
stresses thread  inttwction. properly. This variable is LWXI  by  tile

lie~patl  driver to determine I\ hether
Examples of Errors. lntqptiorl or not to send keystroke values  to the

testing ofthr  .\J‘Jf \itnul,ltor  rcve:~lctl error  clcscrilwtl  Iirre  o~~~~l115  2s  ‘111 ill- v.ree~l.  or.just  to send a ivnihol (5rtc.h
several errors which would not have teIxtion  xrion#  niethotls  of ;I  single ;IS  .ln  asterisk) indicating th:Lt LI  ke!
been  found  bith  u n i t  t e s t i n g .  ‘I‘he class. ~V;IS  p r e s s e d .  The init rnerhod  in Key-

customer inserts card

: ASF starts

message is displayed

1 ASF ends here
:

n validatecard /

w MM-Path \ 1 pinForP$  1 /- -

n - n l l + Message

Figure&  The  P IN  En t r y  Atomic System  FUnCtiOn



Customer inserts card (input port event)

1
CardSlot:  validatecard
CardSlot:  membercard I-

M M - P a t h CardSlot:  validatecard
Security: checkPin

I

NumKeypad: getKeyEvents MM-Path

Security: checkPin
Bank: pinForPan

M M - P a t h Screen: showMessage

NumKeypad: getKeyEvents
Security: checkPin

1
M M - P a t h Screen: showMessage I-

MM-Path

Screen: showMessage

NumKeypad: getKeyEvents
NumKeypad: parseKeyEvent 1

M M - P a t h

4

Transaction menu displayed (output port event)

p a d  4~21s  IlitlcU;It,i  t o  I‘11CE.  Sillc-c Figure 5.  PIN Entry ASF showing
this  cotle !\;I5 Ilot  bcirlg ill\okctl  Ior all included MM-Paths
NulllKrvp‘lcl.  IlltleD.1t.l  \\;I5  not p r o p -

erly iliiti;ili/etl.  Il~e  \,iltlc  i t  h;ld I)\
chance 011 ;tllocxtioi~  \\;a 0, the \;llne
as F.\l.SE.  \\‘licn  1%~’  itiiplemeiitetl
the PIN  Entr! portion  ot the .YI’&I.
allot sting ., NLIIlIli~\p;Id o b j e c t  to
nlan‘lgel~  PIN c‘ntn.  tlw  cr1‘01 01‘  n o t
prolxrl\  initiali/ill;r  thr,  N~inllie\p:ltl
class  I\;L tliscc)\Crctl.  \illce  rlie digits
were echoetl  to the screen.  Kilit tc’st-
ing the init niettiotl 01‘ NutiiKrq~xl
did not (in Lt.  (~~ui~l not) rrve;il  the
e r r o r  lIe~;~ll~t  t h e  erl’ol‘  \vxl  the.  .lb

sence o f  4  mcsaajie ~111.  I  nteq3ion
testing ;I  Numl<q~l  object with 2
Screen and ;I  Securit\  object revealed
the error.

Observations
The nel\ cotl>tructh  tlefincd  here  rc-
s u l t  i n  ;I  u n i f i e d  \tc’w OF  objrct-
oriented testing, with t:,iirlv seamless
transitions across the five levels dib-
cussed earlier. l\‘e \\ish  to  clarify,
some of our observations about this
formulation. In Figure 6, the con-
structs of interest ‘ire entities in an
E/K diagram. The tirst  observation is
t h a t many-to-man\ relationships
dominate.

An  ob.ject  may be involved in many
threads, and thrends  entail many ob-
jects. .Similarly,  an object may be in-
volved with m;m\ atomic system
functions. nnd xi .-SF may entail
many objectb.  These two mappings
guatxntee  that objects are integrated,

.~ntl  turthcrt~iore.  tlir intcyatioii  i s
~ronntletl  i n  txtia~ior;tl  r;lther  thaII
\truc t[il-;ll, c-onsitl~t.;ltions.  One of’ttlc
pitl;lltb  ol’  stt-uc  ttrr21  tchting i s  t h e
prol)lcni  (It.  itittasiblc  p,lths.  IVe
Iliigtlt espa  t ~iiiiil~i~-  ililCa5it)lc  ~oii-
nections if objects were intqxited
\vith  strrtctural  c-rirrria. S o  filr,  0111‘
cotistructs  h,l\e  .Ivoitlctl  the prot)lem

Figure 6. An E/R model for  the

constructs of object-oriented
testing

M e t h o dv

IM M - P a t h

01 ~tructur.lII~  possible  .intl  behavior-
,lII\  llnpoult’te  p,1th.

Lkgclieratc  c,lws  .irr 9)nierimes
inhtrucXi\-e.  In 0111‘ Irs;iqe  ol’thex  cotI-
structs.  wc h:i\~e noted the loIIo\\ing:

l I-t1tz  ~llolTest  .\I~I-l’at~l  coI1~lsts  ot

t\vo  mettiotls linkctl 1~~  one mc’h-
Sl”C.0
l The shortest .-\SF  consist> ot an
inprlt pal-t  c\‘ellt.  ;I  mirlimal  .LI>l-
Path, and xi output port evtznt.
l .An  M1L-P;itti  is maximal ikithin
an .ASF.  that is. an ~11lLPatll  entls
either at the point of first ~ntxage
quiessence  or with the output port
e v e n t  ttut  ends  211  .\SF.

;\SFs sometimes have an initial
Sl!bl-Path  \\hicli  connects  to several
M&I-Pxttis  t h a t  p r o d u c e  tlifferent
p o r t  orltpur  event5.  sllcfl  .~SFs  c‘olTe-

sp,md eUctl\  t o  stlllllilrls,I~e~ponse

pairs. I‘his 15  a ~tmlr\s  junctul-e be-
t\\cen ol)jrc.t-ol.ictitc(i integr;rtion
te5tiiig  .rncl  ~~strniltlire.ltl)  te4tinq.

‘flit  \hortc*\t  tlirc:itl c on5ists  ot’onr
.\SF. -1Iiis  ~lrgen~~~;ic\~  ~xn b e  cotn-
p~~~~nclecl  I,) the po\\ibilitv  ol’the sin-
glca  .\SF  coiisi5tinq ()I’  .I  Gngte  MLI-
t%th.  In thr  \.I-&[  example.  t h i s  tle-
genera7 h;ipI)c.~I\  ibitli rlifiit  cntr\.

\\‘e lincl  tll.it  tlic fi\r  IrYe!>  of ob-
ject-oriented testin,cr  result in clistitict.
~isehil  tatin<  goals. 25  \\clt  ‘is a
bottom-up testin,(7 01xlcr.  The  lowest
trvcl t e s t s  intli\  idrlat nietliotl~ .Ls
amd;llone  fiitictions. Once t e s t e d ,
thex  become nodes in the object net-
work graph, where scpara4v tested
methods are connected bv messa~ges.
Two le\,el.s  of object inteqratioli  are
helpful, we test the MM-Paths first,
and then tat  tht:ir intrrac%on  in x1
SF. At  the ytem  Iael,  the overlap
from XSF  testing to thread testing is
helpful.

Thread interacttoll  testing is be-
vend  the scope of this article, but we
note that such interaction is nece5bx-
ily with respect to data items. If we
took such data to be a mutant form of
a message (uncertain destination, no
return, but clearly a render and re-
ceiver), the notation only needs a
slight extension.

Two final observations: the new
constructs are directly usable as the
basis for test coverage metrics, and
they work well  with composition. For
spatial reasons we deleted description



of our solut ion to the t ime-out  prob-
lems in  the  ATM  example.  To add
timeouts.  the composit ion affects the
e x i s t i n g  ot?jects,  M M - P a t h s ,  ASFs,
and threads.  LVhat  appears complex
and int imidat ing turned out  to  be
straightforward.  From this  l imited
experience, we conjecture that  these
constructs will  be even more useful
fiw  object reuse, and the composition
that  must  occur when a system is
maintained.  0
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