Paul C. Jorgensen and Carl Erickson

Object-Oriented
integration

Testing

bject-oriented software devel-
opment raises important test-
ing issues. Many of these stem
from attempts to directly
apply theoretical constructs and tech-
niques of traditional software develop
ment and testing to object-oriented
software. We examine this traditional
heritage here, with specia emphasis
on assumptions and practices that
need to be modified or replaced.

We identify five levels of object-
oriented testing; four of these map
nicely into the commonly accepted
unit, integration, and system levels of
traditional software testing.

(Placement of the remaining level is
primarily a management considera-
tion.) We aso identify two new testing
constructs and a directed graph nota
tion that helps formalize object-orient-
ed integration testing. These are
illustrated with an object-oriented for-
mulation of an automated teller
machine (ATM) system. The source
code (Objective-C) for this system is
available from the authors.

We begin with an important dis-
tinction: structure vs. behavior. Most
of the popular notations used in soft-
ware development (E/R models, data
flow diagrams, structure charts,
PDLs, and so on) portray software
structure: the components, relation-
ships among these, the interfaces,

30 September 1994/Vol.37, No.9

control and dataflow, and so on. Such
information is certainly needed by
software developers, but it is only
moderately useful to testers. For sim-
ple programs, we can understand
behavior in terms of structure, but
there is a relatively low threshold of
program complexity beyond which
this derivation becomes untenable.
Software testing is fundamentally
concerned with behavior (what it
does), and not structure (what it is).
Customers understand software in
terms of its behavior, not its struc-
ture. The object-oriented testing
constructs we introduce here are de-
liberately behavioral rather than
structural.

To provide a context for object-
oriented integration testing, we high-
light the traditional software (and sys-
tem) testing notions that have special
implications for object-oriented soft-
ware testing. Traditional software is

« Written in an imperative language
« described by a functional decom-

position

« developed in a waterfall life cycle

« separated into three levels of test-
ing

Since these often do not apply di-
rectly to object-oriented software,
they represent latent assumptions
which must be revisited.

Most software developers use an
imperative language, in which the
order of source statements deter-
mines the execution order of com-
piled object instructions. The familiar
languages (Fortran, Cobol, C, Pascal,
Ada, and assembly languages) are all
imperative, as opposed to declarative
languages (e.g., Prolog), in which the
source statement order has little to do
with execution order. Imperative lan-
guages are so widely used (and for so
long), they have become “natural” to
most programmers. All of structured
programming, with the basic control
structures of sequence, selection, and
repetition, and the single-entry,
single-exit precept, is directed at im-
perative languages.

Imperative languages lend them-
selves to a rigorous description as a
directed graph, or program graph
[8], in which nodes are statements (or
statement fragments) and edges rep-
resent control flow sequence. From
this starting point, several graph

theory-based testing constructs have
been defined: DD-Paths, define/
reference nodes, definition clear
paths, and program slices, to name a
few. These all help the tester give a
more accurate description of what is
being tested, and all lead to useful test
coverage metrics.

In contrast, declarative languages
suppress sequentiality, thereby sacri-
ficing the descriptive benefits of di-
rected graphs. (On the other hand,
declarative languages are naturally
represented by more formal nota-
tions, such as the predicate or the
lambda calculus, which in turn open
possibilities of formal proofs of cor-
rectness.)

The event-driven nature of object-
oriented systems forces a “declarative
spirit” on testing. This is not.gvident
at the unit level (most object-oriented
programming languages are impera-
tive), but it is pronounced at the inte-
gration and system levels.

Functional decomposition is the
natural extension of the systems anal-
ysis introduced as a problem-solving
technique by the U.S. Army in the
1930s [1]. Known equally often by its
synonym, top-down development,
functional decomposition can be ei-
ther prescriptive or descriptive. The
prescriptive view (which is enforced
in functional languages such as Lisp)
demands that software development
begins “at the top,” and proceeds by
subdividing functionality into succes-
sively lower levels of detail, resulting
in a hierarchy, or functional decom-
position tree.

The descriptive view is more toler-
ant of the way people work, often flit-
ting across levels of abstraction in
seemingly random orders [5], and
reinforcing analysis with synthesis, a
symbiosis found in most other engi-
neering disciplines. The end result is
the same: a tree-like decomposition
of system functionality into compo-
nents that exhibit several senses of
hierarchy: levels of abstraction, lexi-
cal inclusion, information hiding, and
corresponding data structures which
may have parallel decompositions
into various user-defined types.

Functional ~ decomposition has
been the mainstay of software devel-
opment since the 1950s, partly be-
cause it fits so well with other hier-
archies: organizational structures,

program language packaging, hard-
ware packaging (system, frame, rack,
card,. .)and the fan-out of activities
in the waterfall model of software
development. Despite these reinforc-
ing morphisms, functional decompo-
sition has its vulnerable points. De-
composing a problem so that exist-
ing components (to be reused) ap-
pear in the tree is tricky, and the de-
composition criteria used have an
enormous impact on the resulting
system. The rival strategy, composi-
tion, has been all but lost in the struc-
tural revolution.

Functional ~ decomposition has
deep implications for testing: first, it
emphasizes levels of abstraction
(hence, levels of testing), and second,
it creates questions of integration
order (top-down or bottom-up). Most
important (and insidious) is that it
stresses structure over behavior.

The well-known waterfall model of
software development is sometimes
depicted as a “V” in which the de-
velopment phases (requirements spe-
cification, preliminary design, and
detailed design) are at levels corre-
sponding to system, integration, and
unit testing. The sequential nature of
the waterfall model predisposes a
bottom-up testing approach in which
unit testing produces separately
tested components which are eventu-
ally integrated to support system test-
ing. The integration portion of this is
driven by the functional decomposi-
tion tree, where there is another top-
down or bottom-up question. Which-
ever alternative is chosen, it is impor-
tant to note that the goal is to fit the
units together into the functional
decomposition tree. Thus the struc-
ture of the system is the goal, not the
behavior.

Since the mid-1980s, the waterfall
model has been critized for several
fundamental defects [1]. Most of
these pertain to the development side
of the model, and to project manage-
ment considerations, rather than to
testing. We believe that the prefer-
ence of structure over behavior as the
goal of integration testing will be rec-
ognized as yet another shortcoming
of the waterfall model.

The three widely accepted levels of
testing-unit, integration, and sys-
tem need some clarification. There
are several definitions of a unit:

COMMUNICATIONS OF THE ACM Scptember 1994/Vol.37, No.9 31

control and dataflow, and so on. Such
information is certainly needed by
software developers, but it is only
moderately useful to testers. For sim-
ple programs, we can understand
behavior in terms of structure, but
there is a relatively low threshold of
program complexity beyond which
this derivation becomes untenable.
Software testing is fundamentally
concerned with behavior (what it
does), and not structure (what it is).
Customers understand software in
terms of its behavior, not its struc-
ture. The object-oriented testing
constructs we introduce here are de-
liberately behavioral rather than
structural.

To provide a context for object-
oriented integration testing, we high-
light the traditional software (and sys-
tem) testing notions that have special
implications for object-oriented soft-
ware testing. Traditional software is

« written in an imperative language
« described by a functional decom-

position

« developed in a waterfall life cycle

« separated into three levels of test-
ing

Since these often do not apply di-
rectly to object-oriented software,
they represent latent assumptions
which must be revisited.

Most software developers use an
imperative language, in which the
order of source statements deter-
mines the execution order of com-
piled object instructions. The familiar
languages (Fortran, Cobol, C, Pascal,
Ada, and assembly languages) are all
imperative, as opposed to declarative
languages (e.g., Prolog), in which the
source statement order has little to do
with execution order. Imperative lan-
guages are so widely used (and for so
long), they have become “natural” to
most programmers. All of structured
programming, with the basic control
structures of sequence, selection, and
repetition, and the single-entry,
single-exit precept, is directed at im-
perative languages.

Imperative languages lend them-
selves to a rigorous description as a
directed graph, or program graph
[8], in which nodes are statements (or
statement fragments) and edges rep-
resent control flow sequence. From
this starting point, several graph

theory-based testing constructs have
been defined: DD-Paths, define/
reference nodes, definition clear
paths, and program slices, to name a
few. These all help the tester give a
more accurate description of what is
being tested, and all lead to useful test
coverage metrics.

In contrast, declarative languages
suppress sequentiality, thereby sacri-
ficing the descriptive benefits of di-
rected graphs. (On the other hand,
declarative languages are naturally
represented by more formal nota-
tions, such as the predicate or the
lambda calculus, which in turn open
possibilities of formal proofs of cor-
rectness.)

The event-driven nature of object-
oriented systems forces a “declarative
spirit” on testing. This is not.evident
at the unit level (most object-oriented
programming languages are impera-
tive), but it is pronounced at the inte-
gration and system levels.

Functional decomposition is the
natural extension of the systems anal-
ysis introduced as a problem-solving
technique by the U.S. Army in the
1930s [1]. Known equally often by its
synonym, top-down development,
functional decomposition can be ei-
ther prescriptive or descriptive. The
prescriptive view (which is enforced
in functional languages such as Lisp)
demands that software development
begins “at the top,” and proceeds by
subdividing functionality into succes-
sively lower levels of detail, resulting
in a hierarchy, or functional decom-
position tree.

The descriptive view is more toler-
ant of the way people work, often flit-
ting across levels of abstraction in
seemingly random orders [5], and
reinforcing analysis with synthesis, a
symbiosis found in most other engi-
neering disciplines. The end result is
the same: a tree-like decomposition
of system functionality into compo-
nents that exhibit several senses of
hierarchy: levels of abstraction, lexi-
cal inclusion, information hiding, and
corresponding data structures which
may have parallel decompositions
into various user-defined types.

Functional ~ decomposition has
been the mainstay of software devel-
opment since the 1950s, partly be-
cause it fits so well with other hier-
archies: organizational structures,

program language packaging, hard-
ware packaging (system, frame, rack,
card,. .)and the fan-out of activities
in the waterfall model of software
development. Despite these reinforc-
ing morphisms, functional decompo-
sition has its vulnerable points. De-
composing a problem so that exist-
ing components (to be reused) ap-
pear in the tree is tricky, and the de-
composition criteria used have an
enormous impact on the resulting
system. The rival strategy, composi-
tion, has been all but lost in the struc-
tural revolution.

Functional decomposition has
deep implications for testing: first, it
emphasizes levels of abstraction
(hence, levels of testing), and second,
it creates questions of integration
order (top-down or bottom-up). Most
important (and insidious) is that it
stresses structure over behavior.

The well-known waterfall model of
software development is sometimes
depicted as a “V” in which the de-
velopment phases (requirements spe-
cification, preliminary design, and
detailed design) are at levels corre-
sponding to system, integration, and
unit testing. The sequential nature of
the waterfall model predisposes a
bottom-up testing approach in which
unit testing produces separately
tested components which are eventu-
ally integrated to support system test-
ing. The integration portion of this is
driven by the functional decomposi-
tion tree, where there is another top-
down or bottom-up question. Which-
ever alternative is chosen, it is impor-
tant to note that the goal is to lit the
units together into the functional
decomposition tree. Thus the struc-
ture of the system is the goal, not the
behavior.

Since the mid-1980s, the waterfall
model has been critized for several
fundamental defects [1]. Most of
these pertain to the development side
of the model, and to project manage-
ment considerations, rather than to
testing. We believe that the prefer-
ence of structure over behavior as the
goal of integration testing will be rec-
ognized as yet another shortcoming
of the waterfall model.

The three widely accepted levels of
testing-unit, integration, and sys-
tem need some clarification. There
are several definitions of a unit:

COMMUNICATIONS OF THE ACM Scptember 1994/Vol.37, No.9 3'

OBJECT-ORIENTED

e a single, cohesive function

e a function which, when coded, fits
on one page

e the smallest
segment of code
o the amount of code that can be
written in 4 to 40 hours

e a task

separately compilable

in a work breakdown struc-
ture

e code that is assigned to one per-
son

e code that one person designs,
codes, and tests in a three-month
period

Curiously,
specifically
not chosen their
ware unit.

many organizations that
conduct unit testing have
definition of a soft-
However defined, a unit is
tested “by itself,” with adjacent soft-
ware units being replaced by stubs
and drivers to emulate inputs and

Figure 1. Directed-graph repre-
sentation of the object network.
Three Method-Message Paths
(MM-Paths 1.2, and 3), and two
Atomic System Functions (ASFs 4
and 13) are shown.

SOFTWARE TESTING

outputs. The goal of unit testing is to
verify that, taken by itself, the unit
functions correctly. (Another view is
to see how the unit functions,
ing everything else is perfect.)

Once units are separately
they are integrated together. Integra-
tion testing is the least well under-
stood of the three levels. Part of this
can be seen in the symmetries with
the waterfall phases: unit testing with
detailed design, integration testing
with preliminary design, and system

assum-

tested,

testing with requirements specifica-
tion. These symmetries are comfort-
able in that the basis for test case

identification is clear. Of these, the
unit level is best understood (both in

terms of detailed design and unit test-

ing), followed by the system level.
The “leftovers” are given to prelimi-
nary design and integration testing.

Since the mid-1970s, various mod-
ule interconnect languages have been
proposed [3] as descriptions of the
information to be produced by pre-
liminary design. In general, this in-
cludes the levels of functional decom-
position and the major interfaces
among components at these levels.
This forces the goal of integration

Object 1

Q)

metht

Object 2

32 September 1994/Vol.37, No.Y COMMUNICATIONS OF THE ACM

testing to address these primarily
structural considerations.
some frequently wused views:

Here are

e the gradual replacement of stubs
and drivers by separately tested
units

o pairwise integration, in which

each unit is integrated with its adja-
cent units

e bottom-up integration guided by
the functional decomposition tree

e top-down integration guided by

the functional decomposition tree

e “big bang” integration where all

units are thrown together at once

The common thread (and deh-
ciency) among these possibilities is
that they stress structure and inter-
faces, rather than behavior. They all
presume that correct behavior is
guaranteed by correct structure and
interfaces.

Where does integration testing
end and system testing begin? Dis-

tinctions based on waterfall phases
beg the question, because it is equally

difficult to decide where require-
ments specification ends and prelimi-
nary design begins. We offer an ex-

plicit distinction: system testing is

Object 3

meth2

The declarative aspect OFf object-oriented
software lies primarily in its
event-driven nature. Dynamic binding also creates an

indefiniteness that resembles that of declarative programs.

conducted exclusively in terms of
inputs and outputs that are visible at
the port boundary of a system. A sys-
tem tester can only have access to
those port events that are available to
the customer/user. In contrast, inte-
gration testing can access memory
events and conditions that are invisi-
ble at the system level. Another place
to see this demarcation is when a sys-
tem is developed on one platform to
he deivered on a different target
platform. System testing can only
occur on the target platform, while
integration testing could occur on the
development machine.

To the extent that object-oriented
software is declarative, much of the
descriptive power of graph theory-
based dtructural testing techniques
will not he applicable. Within an ob-
ject, individua methods remain im-
perative. All object-oriented lan-
guages return control to the cdling
object when a message is “finished.”
(We consider a message to he the
combination of a receiver object, a
method name, and, optionaly,
method arguments) The declarative
aspect of object-oriented software lies
primarily in its event-driven nature.
Dynamic binding aso creates an in-
definiteness that resembles that of
declarative programs.

Because the concept of a main pro-
gram is minimized, there is no clearly
defined integration structure. Thus
there is no decomposition tree to
impose the question of integration
testing order of objects. We see this as
an advantage for object-oriented
integration testing; it is no longe:
natural to focus on structural testing
orders.

The shift to composition (especially
when reuse occurs) adds anothet
dimension of difficulty to object-
oriented software testing: it is impos-
sible to ever know the full set of “adja
cent” objects with which a given ob-
ject may he composed. Taken by

themselves, two objects may be cor-
rect; yet when they are composed,
erors might result. We are reminded
of M.C. Rscher's paradoxical draw-
ings which center on deliberate er-
rors of composition. The usua re-
sponse from the object-oriented
community is that if the units (ob-
jects) are carefully defined and tested,
any composition will work. This was
the hope of information hiding as a
decomposition criterion in traditional
software development. We know
from experience that this fails. We
know aso that unit testing can nevet
revea integration-level problems.

Object-oriented software develop-
ment, especialy in terms of composi-
tion and reuse, usualy occurs in a
non-waterfall development life cycle;
most commonly one based on rapid
prototyping, perhaps in conjunction
with an incrementa approach. The
rival models (of waterfall) dl have
composition as their fundamental
underlying strategy, and al make no
presumptions about the complete-
ness goal that was so central to water-
fall-based practice. We expect to see
movement in the direction of opera-
tiona specification, likely beginning
with some form of an executable
specification. When requirements
specilications are expressed in this
way, they create a new problem: the
need to make a dynamic-to-static
transition. An essentialy dynamic,
executable specification must some-
how lead to static implementation
components. This is difficult with tra-
ditiona languages, the trandtion is
eased by the inherent dynamism of
the object-oriented paradigm.

The fina implication of traditional
software development 1s that the lev-
els of testing need clarification for
object-oriented software. Two levels
are clear: object methods are units,
and object-oriented unit testing is
simply the testing of these methods.
"I'raditional functiona and structura

testing techniques are fully applicable
to this level. At the system level,
thread-based testing is completely
compatible with object-oriented soft-
ware. The notion of a thread [4] is a
natural construct for system-level
resting. Here are severa views of a
thread:

o a sequence of machine instruc-
tions

« a sequence of source instructions
e a scenario of norma usage

o a system-level test case

o a stimulus/response pair (per [2])
« the behavior that results from a
sequence of system-level inputs

« an interleaved sequence of system
inputs (stimuli) and outputs (re-
Sponses)

« a sequence of transitions in a
state machine description of the sys-
tem

Threads exist independently of
their potential representations. We
can interpret a thread to he a se
quence of method executions linked
by messages in the object network.
This will follow from the constructs.

Constructs for Object-Oriented
Integration Testing
Taken together, the implications of
traditional testing for object-oriented
integration testing require an appro-
priate construct for the integration
level. This construct should he com-
patible with composition, avoid the
inappropriate structure-based goals
of traditional integration testing, sup-
port the declarative aspect of object
integration, and he clearly distinct
from the unit- and system-level con-
structs.

We postulate five distinct levels of
object-oriented testing:

« a method

o Message quiescence

. event quiescence

« thread testing

o thread interaction testing

COMMUNICATIONS OF THE A€M Scptember 1994/Vol.37, No.9 33

OBJECT-

(OISR ARV S O F T WARE

TESTING

Taken together; the implications of traditional

testing #®ow object-oriented

testing require an

An individual method is pro-
grammed in an imperative language
and performs a single, cohesive func-
tion. As such, it corresponds to the
unit level of traditional software test-
ing, and both the traditional func-
tional and structural techniques are
applicable. As noted earlier, both
thread and thread interaction testing
are at the system level. To address the
two remaining levels, we note that for
both cases, method executions are
linked by messages, and quiessence
provides natural endpoints. This is
shown by the object network in Fig-
ure 1, in which nodes (rectangles) are
methods and edges (dashed lines) are
messages. Objects (circles) are not
directly represented in the graph;

they show related collections of
methods.
Definition: A Method/Message

Path (MM-Path) is a sequence of
method executions linked by
messages.

An MM-Path starts with a method
and ends when it reaches a method
which does not issue any messages of
its own. In terms of an executing pro-
cess, we call this point message quies-
cence. Since MM-Paths are composed
of linked method-message pairs in an
object network, they interleave and
branch off from other MM-Paths. We
chose this name to be similar to the
DD-Path (decision-to-decision path)
construct of traditional structured
unit testing; MM-Paths provide anal-
ogous descriptive capabilities to ob-
ject-oriented integration testing. Fig-
ure 1 shows three MM-Paths (labeled
1, 2, and 3).

The second construct reflects the
event-driven nature of object-
oriented software. Execution of ob-
ject-oriented software begins with an
event, which we refer to as a port
input event. This system-level input
triggers the method-message se-
guence of an MM-Path. This initial
MM-Path may trigger other MM-
Paths. Finally, the sequence of MM-

integration

appropriate construct for the integration level.

Paths should end with some system-
level response (a port output event).
When such a sequence ends, the sys-
tem is quiescent, that is, the system is
waiting for another port input event
that initiates further processing. This
fits well with the notion of a reactive
system [6] that responds to events in
its environment, and with the notion
of a stimulus/response pair that is
central to the SREM requirements
specification technique [2]. Stimulus/
response pairs are threads that begin
with a stimulus (a port input event),
traverse one or more MM-Paths, and
culminate with one of several possible
port output events. In the case of
event-driven, GUI applications,
poorly written software may not pro-
vide feedback for a user-induced
input event, in which case the ending
port event is null.

Definition. An Atomic System
Function (ASF) is an input port event,
followed by a set of MM-Paths, and
terminated by an output port event.

An atomic system function is an
elemental function visible at the sys-
tem level. As such, ASFs constitute the
point at which integration and system
testing meet, which results in a more
seamless flow between these two
forms of testing. The output port
event which defines the end of an
ASF may have different values (in-
cluding null) for multiple executions
of the same ASF. Figure 1 shows two
ASFs (labeled A and B at the start and
stop points). ASF A is composed of a
single MM-Path (1). ASF B is com-
posed of MM-Paths 2 and 3.

Example

As a concrete example of the object-
oriented testing constructs we have
proposed, consider an automated
teller machine (ATM) system. All
ATM systems must deal with the
entry of a customer’s personal identi-
fication number (PIN), which is
known only by the central bank and
the customer. The customer’s ATM

54 September 1994/Vol.37, No.9 COMMUNICATIONS OF THE ACM

card is encoded with a personal ac-
count number (PAN) and is read by
the card reader device in the ATM to
obtain an expected PIN from the
bank. A customer has three chances
to enter the correct PIN. Once a cor-
rect PIN has been entered, the user
sees a screen requesting the transac-
tion type. Otherwise a screen advises
the customer that the ATM card will
not be returned, and no access to
ATM functions is provided.

The following steps occur after the
user enters a card:

1. A screen requesting PIN entry is
displayed

2. An interleaved sequence of digit
key touches with audible and visual
feedback

3. The possibility of cancellation by
the customer before the full PIN is
entered

4. Interdigit time-outs, followed by
screens asking if the user needs
more time

5. Entry of a yes/no response to the
time-out screen

6. A system disposition (valid PIN
entered or card retained)

A finite-state machine (FSM) de-
scription of PIN entry (to appear in
[7]) contains an upper-level FSM with
8 states, 10 transitions, and 4 paths.
Three of these states are decomposed
to a lower-level FSM that contains 9
states, 18 transitions, and 14 paths,
resulting in a cyclomatic complexity
of 13.

Classes for ATM PIN Entry. We
have implemented an ATM simulator
on NEXTSTEP using Obijective C.
We use this system as a means to
ground our work in real code, and as
an illustration of our object-oriented
testing constructs. The class hierar-
chy of the ATM simulator is shown in
Figure 2, which shows only the classes
for the problem domain; we used the
standard NeXT AppKit classes for
the graphical interface objects.

Identifying MM-Paths. Consider

———
~—

e

, CardSiot
//’ Interface to card reader hardware ‘I

, - Bank
Interface to bank database via

! Attributes Methods ' ! Attributes Methods /
| bank card num validate card , \ pin for pan \
‘. card reader status member card | \]
S e e e e - - - 7
//‘—-‘ //,—“\\
—_———— ,/, B \/, N
" - Screen Pie = Security
e
¢ Interface hardware display device r 7 Knows how PINs and PANs match

| Attributes Methods ,’________,’ Attributes Methods
| display screen show message ; \ expected PIN check pin
\, echo input screen display input \ num of tries
D U - - ———m—m—— —
- -~ -7~ -~ ~
N
P g 4 . . >
,° SpecialKeypad \
7
’/ Interface to hardware special keypad ‘/
PR
Attributes Methods l‘ _ o AR
H K 1 - - N~ - N
key idenifiers check valid event | ,’ NumKeypad \

7/
4

parse event

!

\I Attributes

~
’ . -

Keypad

Interface to hardware keypad device I

,’ Attributes
| last key pushed

|
Methods I
check valid event I‘

/|’ Interface to hardware numeric keypad

key identifiers

!
Methods "
check valid event |
parse event i

- = .

| key sequence
data display status

parse event
get last key

\
\

get kay sequence

!

get size of sequence !
clear sequence

set

dsplay status

e e -

/
4

the following tour sequences of he-
havior visible at the svstem level of
the ATM:

L. Entry of a digit

I'. Entry of a PIN

3. A simple transaction: PIN entry,
select transaction tvpe, present ac-
count details. conduct the opera-
lion, report results

1. An ATM session, containing two
or more simple transactions

Digit entry (behavior sequence 1) is
an example of a minima MM-Path
(see Figure 3). It begins with a port
input event (kev wuen rvhich acts as

KeyEvents method. It completes
(reeches message quiescence) with a
messsge 10 t h e parseKeyEvent
method to decode the key.

PIN Entry (behavior sequence 9) is
an example of an atomic system sunc
tion. It is composed of six MM-Paths,
an input port event, and several pos-
sible output port events. Figure 4
shows a mainline portion, in which
the correct PIN is entered on the first
attempt; several error cases are not
shown. The objects in these MM-
Paths know about the length of a PIN,
the number of bad entry attempts,
the PAN/PIN for an account, which

a

message «

o

the NumKeypad:get hank cards are members of the ATMs

Figure 2. The class hierarchy for
the ATM simulator

network. and so forth. For clarity.
Figure 4 has been simplitied by re-
moving the Timer object, and hence
the PIN entry time-out. The MM-
Path components of this ASF are
listed in terms of Object:method sets.

It is instructive to consider where
the longest MM-Path in this ASF
should end: Screer:showMessage or
NumKeypad:parseKeyEvent: The
definition of the ASF makes this
choice unambiguous, since .ASFs are

COMMUNICATIONS OF THE ACM Scptcmber 1994/ Vol 37, No.9 35

OBJECT-ORIENTED

I)()l'[

required to end in output
events. 1 the NumKeypad:parse-
KevEvent were chosen as the end of
the PIN Entry ASF, the system would
not be in j quiescent state at the endd
of the ASF. Figure 5 summarizes the
PIN Entry ASF.

The simple transaction (behavior
sequence 3) is g thread (w hich can be
seen s a1 sequence ot ASFs). and rhe
ATM session (behavior sequence 4) is
a sequence of several threads. As an
organization for testing, the ASF level
focuses on interaction among objects.
the thread level entails interactions
among ASFs: and the final level
stresses thread interaction.

Examples of Errors. Integration
testing ol the ATM simulator revealed
several errors which would not have
been found with unit testing. The

SO T W AR RS U ENG

NumKeypad

getKeyEvents

parseKeyEvent

rigure 3. The Digit Entry MM-Path

error described here occurs as an -
teraction among methods of d single
class.

Objective C classes have inttializa-
tion methods t 0 properls iniualize
instunce variables definedin the class.
Since every class inherits from at least
one superclass (the Object class), the
iniialization method of a class should
irst invoke the initialization code it
inherits. then perform the initializa-
tion specific to the class, thus ensur-
g that initialization occurs in the
order of inheritance. The error that
integration testing discovered was 3
lack of invocation of the superclass
init method in the NumKeypad init
method. As 3 result, the integer vari-
able hideData was n ot nialized
properly. This variable is used by the
kevpad driver to determine w hether
ot not to send keystroke values to the
screen, or just to send a svmbol (such
as an asterisk) indicating that 4 key
was pressea. The init method in Key-

parselKcylvent

message is displayed

‘ ASF ends here

@

(g MM-Path

« v ... P Message

customer inserts card

.« ASF starts
< here

Figured. The PIN Entry Atomic System Function

36 September 1994/Vol 37, NoY ¢OMMUNICATIONS OF THE A€M

Customer

CardSiot: validateCard
CardSlot: memberCard

}MM-Path
}MM-Path
} MM-Path

Security: checkPin
Bank: pinForPan

Security: checkPin
Screen: showMessage

NumKeypad: getKeyEvents
NumKeypad: parseKeyEvent

inserts card

|

} MM-Path

Transaction menu displayed (output port event)

(input port event)

CardSlot; validateCard
Security: checkPin
NumKeypad: getKeyEvents:
Screen: showMessage

MM-Path

NumKeypad: getKeyEvents MM-Path
Screen: showMessage

pad sets hideData to TRUE. Since
this code was not being invoked tor
Nunﬂ{c_vp;u{, hideDatawasnotprop -
erly initialized. The value it had by
chance on allocation was 0, the same
a5 FALSE. When we implemented
the PIN Fnuy portion of the ATM.
alot ating Nuchyp;ld object t
manager PIN entrv. the error of noo t
properly initializing the NumKevpad
class was discovered, since the digits
were echoed to the screen. Unit test-
ing the init method of NumKevpad
did not (in fact, could not) reveal the
error because t he error was the ab-
sence of o message call. I ntegration
testing 4 NumKevpad object with
Screen and 3 Security object revealed
the error.

Observations

The new constructs defined here re-
sult in junified view of object-
oriented testing, with fairly seamless
transitions across the five levels dis-
cussed earlier. We wish to clarify
some of our observations about this
formulation. In Figure 6, the con-
structs of interest yre entities in an
E/R diagram. The first observation is
many-to-many relationships
dominate. '

An object may be involved in mary
threads, and threads entail many ob-
jects. Similarly, an object may be in-
volved with many aomic system
functions. nnd an ASF may entail
many objects. These two mappings
guarantee that objects are integrated,

that

Figure 5. PIN Entry ASF showing
all included MM-Paths

and Turthermore. the integration i s
gl‘(nm(lcd i n behavioral rather than
struc tural, considerations. One of the
pittalls ol struc tural westing is the
problem ol infeasible paths. We
might expec t similar infeasible con-
nections if objects were integrated
with structural criteria, S 0
constructs have avoided the problem

Figure 6. An E/R model fOr the
constructs of object-oriented
testing

Method
Object 4 < Thread
/ 4
AN ASF "
N
N
NIM-Peth

far. our

ol structuralls possible and behavior-
ally tmpossible paths.

Degenerate cases are sometimes
instructive. In our usage of these con-
structs. we have noted the following:

o The shortest MM-Path consists ot
two methods linked by one mes-
sage.

« The shortest ASF consist> ot an
input port event, 1 minimal MM-
Path, and xi output port ecvent.

o An MM-Path is maxima within
an ASF, that is. an M M-Path ends
either at the point of first message
quiessence or With the output port
event thatendsan ASE,

ASFs sometimes have an initial
MM-Path which connects to severd
MM-Paths that produce ditferent
por o output events. Such ASEs corre-
spond exacth t 0 sumulus/response
pairs. This 15 a seamless juncture be-
tween object-oriented integration
tesung and systemthread) testing.

The shortest thread tonsists of one
ASE. This degeneracy can b e com-
pounded by the possibility of the sm-
gle ASF consisting of a single MM-
Path. In the \I'M example. this e-
generiacy happens with digic ent,

We find that the tive levely of ob-
ject-oriented testing result in distinct,
usetul resting woals, as well as a
bottom-up testing order. The lowest
level tests indiv idual methods as
standalone functions. Once tested,
these become nodes in the object net-
work graph, where scparately tested
methods are connected by messages.
Two levels of object integration are
helpful, we test the MM-Paths first,
and then test thelr interaction in an
ASFE. Atthe svstem level, the overlap
from ASF testing to thread testing is
helpful.

Thread interaction testing is he-
vond the scope of this article, but we
note that such interaction is necessar-
ily with respect to data items. It we
took such data to be a mutant form of
a message (uncertain destination, no
return, but clearly a1 render and re-
ceiver), the notation only needs a
dight extension.

Two fina observations. the new
constructs are directly usable s the
basis for test coverage metrics, and
thev work well with composition. For
spaiial reasons we deleted description

COMMUNICATIONS OF THE ACM Scptetiber 994/ VoL37, No.9 37

OBJECT-ORIENTED

of our solution to the time-out prob-
lems in the ATM example. To add
timeouts. the composition affects the
existing objects, MM-Paths, ASFs,
and threads. What appears complex
and intimidating turned out to be
straightforward. From this limited
experience, we conjecture that these
constructs will be even more useful
for object the composition
that must occur when a system is
maintained. O

reuse, and

References

L. Agresti, WA New Paradigms for Soft-
ware Development. |EEE Computer Soci-
ety Press, Washington, D.C., 1986.

2. Allord, M. SKEM a the age of eight:
The distributed computing design.
{EEE Comput. 18, 4 (Apr. 1985), 36-46.

3. DeRemer, F. and Kron, H.H. Pro-
gramming-in-the-large v s. program-
ming-in-the-small. [EEE Trans. Softw.
Eng. SE-2, 2 (dune 1976).

4. Deutsch, M.S. Software Verification and

FTWARE TESTING

Validation: Realistic Project Approaches.
Prentice-Hall, Englewood Clifts, N.J.,
1982,

5. Guindon, K. Knowledge exploited by
experts during software systems de-
sign. Tech. Rep. STP-032-90, MCC,
Austin, Tex., 1989.

6. Harel, D. and Preuli, A. On the devel-
opment of reactive systems. In Logics
and Models of Concurrent Systems, K.R.
Apt, Ed. Springer-Verlag, New York,
19x5, pp. A477-498.

7. Jorgensen, P.C. The Craft of Software
Testing. CRC Press, Boca Raton, Fla. To
he published.

8. Paige, M.R. Program graphs, an alge-
bra, and their implications for pro-
gramming. |EEE Trans. Soﬂw. Eng.
SE-L, 3 (Sept. 1975).

About the Authors:

PAUL C. JORGENSEN is an associate
professor of computer science a Grand
Valey State University. He aso has a con-
sulting practice which combines his re-
search interests with 20 years of industria

software development email:

jorgensp@gvsu.edu

experience.

CARL ERICKSON is an assistant profes
sor of computer science a Grand Valey
State University. His professional interests
include object-oriented and distributed
information systems, and computer sci-
ence education. He is a registered
NEXTSTEP developer, and an active
NEXTSTEP consultant email: erickson
@oak.csis.gvsu.edu

Authors Present Address Computer Sci-
ence and Information Systems Depart-
ment, Grand Valley State University,
Allendale, M1 4940 1-9403.

Permission to copy without fee all or part of this
materia is granted provided that the copies are
not made or distrihuted for direct commercial
advantage, the A(CM copyright notice and the
title of the publication and its date appear. and
notice is given that copying 15 by permission of
the Association for Computing Machinery. To
copy otherwise, or to republish. requires 3 fee
and/or specific permission.

€ ACM 0002-0782/94/0900 $3.30

