
1

State Machines

Massimo Felici

IF-3.46 0131 650 5899

mfelici@staffmail.ed.ac.uk

2

© 2004-2008 SEOC - Lecture Notes 11 2

State Machines
State Machines or Statechart Diagrams
give us the means to control these decisions

Each state is like a “mode of operation” for
the object the Statechart Diagram is
considering

Sequence and Communication Diagrams show how objects interact to meet some
system requirements. They lack information on how the system decides what is the
right thing to do. They correspond to scenarios and are decision free. There may bee
many sequence or collaboration diagrams for one Use Case. The choice of how to
react (that is, which scenario is appropriate) depends on a state.

State Machines or Statechart Diagrams are based on the statechart notation called
HiGraph. Statechart Diagrams are finite state machines with some extra mechanism
to capture the meaning of transitions.
Suggested Readings

• D. Harel. Statecharts: A Visual Formalism for Complex Systems. In Science of
Computer Programming 8(1987):231-274.

3

© 2004-2008 SEOC - Lecture Notes 11 3

Activity vs. State Machines
In UML semantics Activity Diagrams are reducible
to State Machines with some additional notations
In Activity Diagrams the vertices represent the
carrying out of an activity and the edges represent
the transition on the completion of one collection
of activities to the commencement of a new
collection of activities
Activity Diagrams capture high level activities’
aspects
In State Machines the vertices represent states
of an object in a class and edges represent
occurrences of events

The additional notations capture how activities are coordinated. In particular, it is
possible to represent concurrency and coordination in Activity Diagrams.

Objects have behaviours and states. The state of an object depends on its current
activity or condition. A Statechart Diagrams shows the possible states of the object
and the transitions that cause a change in state.

4

© 2004-2008 SEOC - Lecture Notes 11 4

State Machine Basics
Simple,

Complex States
• Composite and Submachine States
• Concurrent Substates
• History States
• Synch States

Transitions

Synchronization Bars and Decision Points

Transition types

Transitions to/from Composite States

Actions

5

© 2004-2008 SEOC - Lecture Notes 11 5

Events
Internal or External Events trigger some
activity that changes the state of the
system and of some of its parts

Events pass information, which is elaborated
by Objects operations. Objects realize
Events

Design involves examining events in a State
Machine and considering how those events
will be supported by system objects

6

© 2004-2008 SEOC - Lecture Notes 11 6

States
A state is a condition of being at a certain time
Objects (or Systems) can be viewed as moving from
state to state
A point in the lifecycle of a model element that
satisfies some condition, where some particular
action is being performed or where some event is
waited
Start and End States

7

© 2004-2008 SEOC - Lecture Notes 11 7

Actions

States can trigger actions
States can have a second compartment that
contains actions or activities performed
while an entity is in a given state
An action is an atomic execution and
therefore completes without interruption
Five triggers for actions:
• On Entry, Do, On Event, On Exit and Include

An activity captures complex behaviour that
may run for a long duration
• An activity may be interrupted by events, in which

case it does not complete

8

© 2004-2008 SEOC - Lecture Notes 11 8

Simple and Composite States

Simple states - simplest of all states, they
have no substates
Composite states – have one or more regions
for substates.
Submachine states – semantically equivalent
to composite states, submachine states have
substates that are contained within a
substate machine
An History State - indicated by a circle
with an H inside it - allows the re-entering
of a composite state at the point which it
was last left

• Composite States can be further broken down into substates (either within the state
or in a separate diagram).
• A composite state is a state with one or more regions.
• A region is simply a container for substates.
• A composite state with two or more regions is called orthogonal.
• A composite state may have an additional compartment called the decomposition
compartment, which is a detailed view of the composite state showing regions,
substates and transitions.
• UML defines a submachine state as a way to encapsulate states and transitions so
that they can be reused.

A composite state with two or more regions is called orthogonal. Unlike composite
states, submachine states are intended to group states, so you can reuse them.
Composite states are typically specific to the current state machine.

9

© 2004-2008 SEOC - Lecture Notes 11 9

Concurrent Substates and Regions

Concurrent Substates are independent and
can complete at different times

Each substate is separated from the others
by a dashed line

10

© 2004-2008 SEOC - Lecture Notes 11 10

Transitions
Viewing a system as a set of states and transitions between
states is very useful for describing complex behaviors
Understanding state transitions is part of system analysis and
design
A Transition is the movement from one state to another state
Transitions between states occur as follows:
1. An element is in a source state
2. An event occurs
3. An action is performed
4. The element enters a target state
Multiple transitions occur either when different events result in a
state terminating or when there are guard conditions on the
transitions
A transition without an event and action is known as automatic
transitions

11

© 2004-2008 SEOC - Lecture Notes 11 11

A Transition Example

Transitions between the Credit and Debit
states of an Account class

Debit Credit

charge

payment

12

© 2004-2008 SEOC - Lecture Notes 11 12

Transition Types

Compound Transition – A representation of
the change from one complete state machine
configuration to another.
High-level Transition – A transition from a
composite state.
Internal Transition – A transition between
states within the same composite state.
Note that transitions between regions of
the same composite state are not allowed.
Completion Transition – A transition from a
state that has no explicit trigger.

13

© 2004-2008 SEOC - Lecture Notes 11 13

Synchronization Bars and Decision Points

Synchronization Bars
• Allow the representation of concurrent states
• Let transitions to split or combine
• It is important when the overall state of a class is

split into concurrent states that these states are
re-combined on the same diagram

Decision Points
• Let a transition to split along a number of

transitions based on a condition

14

© 2004-2008 SEOC - Lecture Notes 11 14

Transitions to/from Composite States
To composite state’s
boundary
• start the subflow at the

initial state of the
composite state

• If the composite state is
concurrent, then the
transition is to each of
the initial states

From composite state’s
boundary
• Immediate and effective

on any of the substates
To the substates
From substates out to
other states

15

© 2004-2008 SEOC - Lecture Notes 11 15

An Example of a Very Complex State

TCAS
Traffic Alert /Collision

Avoidance System

16

© 2004-2008 SEOC - Lecture Notes 11 16

Designing Classes with States Diagrams
Keep the state diagram simple
• State diagrams can very quickly become extremely complex

and confusing
• At all time, you should follow the aesthetic rule: “Less is

More”
If the state diagram gets too complex consider
splitting it into smaller classes

Document states thoroughly

Check consistency with the other view of the
dynamics

Think about compound state changes in a
collaboration or sequence

17

© 2004-2008 SEOC - Lecture Notes 11 17

Building Statechart Diagrams
1. Identify entities that have complex behaviour - Identify a class

participating in behavour whose lifecycle is to be specified
2. Model states - Determine the initial and final states of the entity
3. Model transitions
4. Model events - Identify the events that affect the entity
5. Working from the initial state, trace the impact of events and

identify intermediate states
6. Identify any entry and exit actions on the states
7. Expand states using substates where necessary
8. If the entity is a class, check that the action in the state are

supported by the operations and relationships of the class, and if
not extend the class

9. Refine and elaborate as required

18

© 2004-2008 SEOC - Lecture Notes 11 18

A Simple Statechart Model
A Simple Microwave Oven
1. Select the power level
2. Input the cooking time
3. Press start

Safety. The oven should not operate when the door is open

19

© 2004-2008 SEOC - Lecture Notes 11 19

Types of State Machines

Behavioral state machines show the
behavior of model elements such as objects.
A behavioral state machine represents a
specific implementation of an element.

Protocol state machines show the bahavior
of a protocol. They show how participants
may trigger changes in a protocol’s state and
the corresponding changes in the system.

20

© 2004-2008 SEOC - Lecture Notes 11 20

Some (Open) Questions
What are the benefits
of having states in a
system?
What are the costs of
having states in a
system?
Every state should have
an edge for every
message in the class - is
this the right view?
How does this
description of state
relate to design by
contract?

How would you check
that a Java
implementation was
consistent with a state
diagram?
How does this differ
with the treatment of
state in programming
languages?
What does this say
about the different
between modeling and
programming?

21

© 2004-2008 SEOC - Lecture Notes 11 21

Readings

Readings

UML course textbook
• Chapter 12 on State Machines

Suggested Readings
• D. Harel. Statecharts: A Visual Formalism for

Complex Systems. In Science of Computer
Programming 8(1987):231-274.

22

© 2004-2008 SEOC - Lecture Notes 11 22

Summary

Statechart Diagrams

Activity vs. Statechart Diagrams

Statechart Diagrams Basics
• States and Events, Transitions, Actions,

Synchronization Bars, Decision Points, Complex
States (i.e., Composite States, Concurrent
Substates, History States, Synch States)

Building Statechart Diagrams

