
Component Diagrams

Massimo Felici

IF-3.46 0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2008 SEOC - Lecture Notes 07 2

Component Diagrams

A component is an encapsulated, reusable,
and replaceable part of your software

Rationale

Reducing and defying coupling between
software components

Reusing existing components

The ability to identify software components (which are encapsulated, reusable and
replaceable) supports development strategies that use, e.g., COTS (Commercial-
Off-The-Shelf) components.
Readings
• UML course textbook

• Chapter 8 on Components Diagrams.

© 2004-2008 SEOC - Lecture Notes 07 3

Component Diagrams
Model physical software components and the
interfaces between them
Show the structure of the code itself
Can be used to hide the specification detail (i.e.,
information hiding) and focus on the relationship
between components
Model the structure of software releases; show
how components integrate with current system
design
Model source code and relationships between files
Specify the files that are compiled into an
executable

Components have interfaces and context dependencies (i.e., implementation-
specific shown on diagram; use-context may be described elsewhere, for example,
documentation, use-cases, interaction diagrams, etc.).

© 2004-2008 SEOC - Lecture Notes 07 4

Component Notation

A Component is a physical piece of a system, such as a
compiled object file, piece of source code, shared
library or Enterprise Java Bean (EJB)

Note UML 2.0 uses a new notation for a component. Previous UML versions use
the component icon as the main shape.

© 2004-2008 SEOC - Lecture Notes 07 5

Component Interfaces

A provided interface of a component is an
interface that the component realizes

A required interface of a component is an
interface that the component needs to
function

Class interfaces have similar notations (definitions).
Provided interfaces define “a set of public attributes and operations that must be
provided by the classes that implement a given interface”.
Required interfaces define “a set of public attributes and operations that are
required by the classes that depend upon a given interface”.
Java Warnings: Note that these definitions of interfaces differ from the Java
definition of interfaces. The Java definition of interfaces does not allow to have
attributes, nor hence state.
Readings
• UML course textbook

• Chapter 7 on Class Diagram: Other Notations.

© 2004-2008 SEOC - Lecture Notes 07 6

Component Assemblies
Components can be “wired” together to form
subsystems

© 2004-2008 SEOC - Lecture Notes 07 7

Ports
A port (definition) indicates that the component
itself does not provide the required interfaces (e.g.,
required or provided). Instead, the component
delegates the interface(s) to an internal class.

Component Realization. A component might implement (realize) the provided
interfaces for the component, or it may delegate that realization to other classes that
make up that component. The realization dependency can be shown in three ways:
(1) listing the realization classes, (2) using realization dependency relationships, (3)
showing containment graphically.

Ports Forwarding and Filtering. Ports connect to the required and provided
interfaces on the outsize of the class. They can also connect to the classes of the
component itself.

© 2004-2008 SEOC - Lecture Notes 07 8

Component Modelling
1. Find components and dependencies

2. Identify and level subcomponents

3. Clarify and make explicit the interfaces between
components

Component Diagrams can show how subsystems relate and which interfaces are
implemented by which component. A Component Diagram shows one or more
interfaces and their relationships to other components.
Another example of a component diagram (note the notation complies UML
versions earlier than UML 2.0).

AirlineSystem.jar

ReservationSystem.jar
{class-path= common.jar,
version=3.2}

Common.jar

© 2004-2008 SEOC - Lecture Notes 07 9

Components Diagrams
A Component Diagram shows the
dependencies among software components,
including source code, binary code and
executable components.

Some components exist at compile time,
some exist at link time, and some exist at
run time; some exist at more that one time.

Dependencies
Reside Dependencies. A reside dependency from a component to any UML
element indicates that the component is a client of the element, which is considered
itself a supplier, and that the element resides in the component.
Use Dependencies. A use dependency from a client component to a supplier
component indicates that the client component uses or depends on the supplier
component. A use dependency from a client component to a supplier component’s
interface indicates that the client component uses or depends on the interface
provided by the supplier component.
Deploy Dependency. A deploy component from a client component to a supplier
node indicates that the client components is deployed on the supplier node

© 2004-2008 SEOC - Lecture Notes 07 10

How to produce component diagrams

1. Decide on the purpose of the diagram

2. Add components to the diagram, grouping
them within other components if
appropriate

3. Add other elements to the diagram, such
as classes, objects and interfaces

4. Add the dependencies between the
elements of the diagram

© 2004-2008 SEOC - Lecture Notes 07 11

Readings

UML course textbook
• Chapter 7 on Class Diagram: Other Notations.
• Chapter 8 on Components Diagrams.

© 2004-2008 SEOC - Lecture Notes 07 12

Summary

Component Rationale

Notation

Component Diagrams

Modelling

