
Validation: CRC Cards

Massimo Felici

IF 3.46 0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2008 SEOC - Lecture Notes 06 2

What are CRC Cards?
CRC: “Class-Responsibility-Collaborator”

CRC cards provide the means to validate the
class model with the use case model

Responsibilities are a way to state the
rationale of the system design

CRC cards support responsibility-based
modeling

CRC cards allow a useful early check that the anticipated uses of the system can be
supported by the proposed classes. They support a brainstorming technique that
works with scenario walkthroughs to stress-test a design.

Responsibility-based modeling is appropriate for designing software classes as
well as for partitioning a system into subsystems. The underlying assumptions are:

• People can intuitively make meaningful value judgments about the allocation of
responsibilities

• The central issues surrounding how a system is partitioned can be captured by
asking what the responsibility of each part has toward the whole - Is it really
the responsibility of this object to handle this request? Is it its responsibility to
keep track of all that information?

Readings
• K. Beck, W. Cunningham. A Laboratory for Teaching Object-Oriented

Thinking. In Proceedings of OOPSLA '89.

© 2004-2008 SEOC - Lecture Notes 06 3

Design by Responsibilities
Responsibility-based Modeling allows
• The identification of the components from which

the system is constructed
• The allocation of responsibilities to system

components
• The identification of the services (or

functionalities) provided by them
• The assessment how components satisfy the

requirements as stated by the use cases

Types of Responsibilities
• To do something (active responsibilities)
• To provide information (acting as a contact point)

Suggested Readings
• A. Cockburn. Responsibility-based Modeling.

© 2004-2008 SEOC - Lecture Notes 06 4

Design Activities

1. Preparation: collection and selection of use
cases

2. Invention: (incremental) identification of
components and responsibilities

3. Evaluation: questions and scenarios stress
test the design

4. Consolidation: further assessment of the
tested components

5. Documentation: recording identified
reasons and scenarios

© 2004-2008 SEOC - Lecture Notes 06 5

Steps in Responsibility-based Design
1. Identify scenarios of use; bound

the scope of design
2. Role play the scenarios, evaluating

responsibilities
3. Name the required responsibilities

to carry a scenario toward
4. Make sure that each component

has sufficient information and
ability to carry out its
responsibility

5. Consider variations of the
scenario; check the stability of
the responsibility

6. Evaluate the components
7. Ask the volatility/stability of the

component
8. Create variations

9. Run through the variant scenarios
to investigate the stability of the
components and responsibilities

10. Simulate if possible

11. Consolidate the components by
level

12. Identify subsystems

13. Identify the different levels

14. Document the design rationale and
key scenarios

15. Decide which scenarios to
document

16. List the components being used
that already exist

17. Specify each new component

© 2004-2008 SEOC - Lecture Notes 06 6

CRC Cards: How do they look like?
CRC Cards explicitly represent multiple
objects simultaneously

1. The Name if the class it refers to
2. The Responsibilities of the class. These should be

high level, not at the level of individual methods
3. The Collaborators that help discharge a

responsibility

Class Name

Collaborators
…

Responsibilities
…

1

2

3

© 2004-2008 SEOC - Lecture Notes 06 7

CRC Cards in Design Development
1. Work using role play. Different individuals are

different objects

2. Pick a use case to building a scenario to hand
simulate

3. Start with the person who has the card with the
responsibility to initiate the use case

4. In discharging a responsibility a card owner may
only talk to collaborators for that responsibility

5. Gaps must be repaid and re-tested against the use
case

© 2004-2008 SEOC - Lecture Notes 06 8

Using CRC Cards
1. Choose a coherent set of use cases

2. Put a card on the table

3. Walk through the scenario, naming cards and
responsibilities

4. Vary the situations (i.e., assumptions on the use
case), to stress test the cards

5. Add cards, push cards to the side, to let the
design evolve (that is, evaluate different design
alternatives)

6. Write down the key responsibility decisions and
interactions

Suggested Readings
• A. Cockburn. Using CRC Cards.

© 2004-2008 SEOC - Lecture Notes 06 9

A Design Example

A Library System
The library system must keep track of when books
are borrowed and returned
The system must support librarian work
The library is open to university staff and students

© 2004-2008 SEOC - Lecture Notes 06 10

A Design Example

Borrower

Record
Record

Borrow book
Return book

Record

CopyKeep track

Copy

Librarian

Book

Record:
Borrowed or
Returned

Book copies

Book

Book information

Number of
available copies

© 2004-2008 SEOC - Lecture Notes 06 11

Playing CRC Cards

Borrower

Record
Record

Borrow book
Return book

1

2

3

Record

CopyKeep track

4

5
6

Copy

Librarian

Book

Record:
Borrowed or
Returned

Book copies

7

88

99

Book

Book
information
Number of
available copies10

Note that playing with CRC cards points out interactions between classes. UML
provides specific notations (e.g., communication or sequence diagrams) for
modeling these interactions.

© 2004-2008 SEOC - Lecture Notes 06 12

What CRC Card help with

Check use case can be achieved

Check associations are correct

Check generalizations are correct

Detect omitted classes

Detect opportunities to refactor the class
model. That is: to move responsibilities
about (and operations in the class model)
without altering the overall responsibility of
the system

© 2004-2008 SEOC - Lecture Notes 06 13

CRC Cards and Quality
Too many responsibilities
• This indicates low cohesion in the system
• Each class should have at most three or four responsibilities
• Classes with more responsibilities should be split if possible

Too many collaborators
• This indicates high coupling
• It may be the division of the responsibilities amongst the

classes is wrong

CRC Cards
• provide a good, early, measure of the quality of the system

(design). Solving problems now is better that later.
• are flexible – use them to record changes during validation

© 2004-2008 SEOC - Lecture Notes 06 14

Using CRC Cards: An Example
Specimen Use Cases

1. Patient admitted to ward.
When a patient arrives on a
ward, a duty nurse must
create a new record for this
patient and allocate them to
a bed.

2. Nurse handover. The senior
duty nurse at the end of
their shift must inform the
new staff of any changes
during the previous shift
(i.e., new patients, patients
discharged, changes in
patient health, changes to
bed status or allocations).

NHS Trust Manager

Hospital
…

Initialize system
Check free beds
…

© 2004-2008 SEOC - Lecture Notes 06 15

Using CRC Cards: An Example continued

Nurse

Record,Bed
Record
Bed
Bed, Record
…

Admit patients
Update patient records
Reserve beds
Discharge patients
…

Record

Nurse
…

Is_updated
… Bed

Nurse, Record
Nurse
…

Is_allocated
Is_reserved
…

© 2004-2008 SEOC - Lecture Notes 06 16

Principles for Refactoring
Do not do both refactoring and adding
functionality at the same time

Make sure you have good tests before you
begin refactoring

Take short deliberate steps

Do not do both refactoring and adding functionality at the same time
• Put a clear separation between the two when you are working
• You might swap between them in short steps, e.g., half an hour refactoring, an

hour adding new function, half an hour refactoring what you just added
Make sure you have good tests before you begin refactoring

• Run the tests as often as possible; that way you will know quickly if your
changes have broken anything

Take short deliberate steps
• Moving a field from one class to another, fusing two similar methods into a

super class
• Refactoring often involves many localized changes that result in a large scale

change
• If you keep your steps small, and test after each step, you will avoid prolonged

debugging

© 2004-2008 SEOC - Lecture Notes 06 17

When to Refactor?
When you are adding a function to your
design (program) and you find the old design
(code) getting in the way

When you are looking at design (code) and
having difficulty understanding it

When adding a new function starts becoming a problem, stop adding the new
function and instead refactor the old design (code). Refactoring is a good way of
helping you understand the design (code) and preserving that understanding for the
future.

© 2004-2008 SEOC - Lecture Notes 06 18

OO Design using CRC Cards

1. Review quality of class model

2. Identify opportunities for refactoring

3. Identify (new) classes that support system
implementation

4. Identify further details (e.g., sub-
responsibilities of class responsibilities,
attributes, object creations, destructions
and lifetimes, passed data, etc.)

Use a team of (ideally) 5-6 people, including developers, 2 or 3 domain experts, and
an “object-oriented technology facilitator”.

© 2004-2008 SEOC - Lecture Notes 06 19

OO Analysis using CRC Cards

1. Session focuses on a part of requirements

2. Identify classes (e.g., noun-phrase
analysis)

3. Construct CRC cards for these and assign
to members

4. Add responsibilities to classes

5. Role-play scenarios to identify
collaborators

Similar team, but replace some domain experts with developers. However, always
include at least one domain expert

© 2004-2008 SEOC - Lecture Notes 06 20

Common Domain Modeling Mistakes

Overlay specific noun-phrase analysis
Counter-intuitive or incomprehensible class
and association names
Assigning multiplicities to associations too
soon
Addressing implementation issues too early
• Presuming a specific implementation strategy
• Committing to implementation constructs
• Tackling implementation issues (e.g., integrating

legacy systems)
Optimizing for reuse before checking use
cases achieved

© 2004-2008 SEOC - Lecture Notes 06 21

(Suggested) Readings

Readings

K. Beck, W. Cunningham. A Laboratory for
Teaching Object-Oriented Thinking. In
Proceedings of OOPSLA ’89.

Suggested Readings

A. Cockburn’s papers
• Responsibility-based Modeling
• Using CRC Cards

© 2004-2008 SEOC - Lecture Notes 06 22

Summary

We should try to check the completeness of
the class model (early assurance the model
is correct)
CRC Cards are a simple way of doing this
CRC Cards support responsibility-based
modeling and design
CRC Cards identify errors and omissions
They also give an early indication of quality
Use the experience of simulating the system
to refactor if this necessary

