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Reuse in Software Engineering
Software Engineering is concerned with 
processes, techniques and tools which enable 
us to build “good” systems

Object-Orientation is a methodology, 
technique, process, suite of design and 
programming languages and tools with which 
we may build good systems

Components are units of reuse and 
replacement
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Examples of Types of reuse
Application system reuse: the whole of an 
application system may be reused by 
incorporating it without change into other 
systems

Component reuse: components of an 
application ranging in size from sub-systems 
to single objects may be reused

Object and function reuse: Software 
components that implement a single 
function, such as a mathematical function or 
an object class, may be reused
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Problems with reuse

Increased maintenance costs

Lack of tool support

Not-invented-here syndrome

Creating and maintaining a component 
library

Finding, understanding and adapting 
reusable components
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Planning Reuse: Key Factors

The development schedule for the software

The expected software lifetime

The background, skills and experience of the 
development team

The criticality of the software and its non-
functional requirements

The application domain

The platform on which the system will run
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Types of Reuse

Knowledge reuse
• Artificial reuse
• Pattern reuse

Software reuse
• Code reuse
• Inheritance reuse
• Template reuse
• Components
• Framework reuse
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Reuse of Knowledge: Artifact Reuse

Reuse of use cases, standards, design 
guidelines, domain-specific knowledge

Pluses: consistency between projects, 
reduced management burden, global 
comparators of quality and knowledge

Minuses: overheads, constraints on 
innovation (coder versus manager)
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Reuse of Knowledge: Patterns
A design pattern is a solution to a common 
problem in the design of computer systems

Reuse of publicly documented approaches to 
solving problems (e.g., class diagrams)

Plusses: long life-span, applicable beyond 
current programming languages, applicable 
beyond Object Orientation?

Minuses: no immediate solution, no actual 
code, knowledge hard to capture/reuse.
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Documenting Patters

Name

Problem

Context

Forces

Solution

Sketch

Resulting context

Rationale
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Classification of UML Patterns

Creational

Structural

Behavioural
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Example: Builder Pattern
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Example: Observer
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Example: State
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Example: Role-Based Access Control
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How to use a pattern

Does a patter exist that address the 
considered problem?
Does the pattern’s documentation suggest 
alternative solutions?
Is there a simple solution?
Is the context of the pattern consistent 
with the context of the problem?
Are the results of using the pattern 
acceptable?
Are there constraints?
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Types of Software Reuse: Code Reuse

Reuse of (visible) source code – code reuse 
versus code salvage

Pluses: reduces written code, reduces 
development and maintenance costs

Minuses: can increase coupling, substantial 
initial investment
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Types of Software Reuse: Inheritance

Using inheritance to reuse code behaviour

Pluses: takes advantage of existing 
behaviour, decrease development time and 
cost

Minuses: can conflict with component reuse, 
can lead to fragile class hierarchy – difficult 
to maintain and enhance
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Types of Software Reuse: Template Reuse

Reuse of common data format/layout (e.g., 
document templates, web-page templates, 
etc.)

Pluses: increase consistency and quality, 
decrease data entry time

Minuses: needs to be simple, easy to use, 
consistent among groups
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Types of Software Reuse: Component

Analogy to electronic circuits: software 
“plug-ins”

Reuse of prebuilt, fully encapsulated 
“components”; typically self-sufficient and 
provide only one concept (high cohesion)

Pluses: greater scope for reuse, common 
platforms (e.g., JVM) more widespread, 
third party component development

Minuses: development time, genericity, need 
large libraries to be useful



© 2004-2008 SEOC - Lecture Notes 05 20

Types of Software Reuse: Framework

Collection of basic functionality of common 
technical or business domain (generic 
“circuit boards”) for components

Pluses: can account for 80% of code

Minuses: substantial complexity, leading to 
long learning process, platform specific, 
framework compatibility issues leading to 
vendor specificity, implement easy 80%
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Reuse Pitfalls

Underestimating the difficulty of reuse

Having or setting unrealistic expectations

Not investing in reuse

Being too focused on code reuse

Generalising after the fact

Allowing too many connections
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Difficulties with Component Development

Economic
• Small business do not have long term stability and 

freedom required

Where is the third party component 
market?
• Effort in (re)using components
• Cross-platform and cross-vendor compatibility
• Many common concepts, few common components
• Some success: user interfaces, data management, 

thread management, data sharing between 
applications

• Most successful: GUIs and data handling (e.g., 
Abstract Data Types)
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Readings

UML course textbook
• Chapter 17 on Design Patterns

T. Winn, P. Calder, Is This a Pattern?. In 
IEEE Software, January/February 2002.
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Summary
Many types of reuse – of both knowledge 
and software
• Each has pluses and minuses

Component reuse is a form of software 
reuse
• Encapsulation, high cohesion, specified interfaces 

explicit context dependencies
• Component development requires significant time 

and effort
• As does component reuse
• Component reuse has been successful for 

interfaces and data handling
Employing reuse requires management


