Design Patterns

Massimo Felici
IF 3.46 01316505899
mfelici@inf.ed.ac.uk

Reuse in Software Engineering

= Software Engineering is concerned with
processes, techniques and tools which enable
us to build "good" systems

= Object-Orientation is a methodology,
technique, process, suite of design and
programming languages and tools with which
we may build good systems

= Components are units of reuse and
replacement

© 2004-2008 SEOC - Lecture Notes 05 2

Examples of Types of reuse

= Application system reuse: the whole of an
application system may be reused by
incorporating it without change into other
systems

= Component reuse: components of an
application ranging in size from sub-systems
to single objects may be reused

= Object and function reuse: Software
components that implement a single
function, such as a mathematical function or
an object class, may be reused

© 2004-2008 SEOC - Lecture Notes 05 3

Problems with reuse

= Tncreased maintenance costs
= Lack of tool support
= Not-invented-here syndrome

= Creating and maintaining a component
library

= Finding, understanding and adapting
reusable components

© 2004-2008 SEOC - Lecture Notes 05 4

Planning Reuse: Key Factors

= The development schedule for the software
= The expected software lifetime

= The background, skills and experience of the
development team

= The criticality of the software and its non-
functional requirements

= The application domain

= The platform on which the system will run

© 2004-2008 SEOC - Lecture Notes 05 5

Types of Reuse

= Knowledge reuse

- Artificial reuse
» Pattern reuse

= Software reuse

- Code reuse

« Inheritance reuse
-+ Template reuse

- Components

- Framework reuse

© 2004-2008 SEOC - Lecture Notes 05

Reuse of Knowledge: Artifact Reuse

= Reuse of use cases, standards, design
guidelines, domain-specific knowledge

= Pluses: consistency between projects,
reduced management burden, global
comparators of quality and knowledge

= Minuses: overheads, constraints on
innovation (coder versus manager)

© 2004-2008 SEOC - Lecture Notes 05 7

Reuse of Knowledge: Patterns

= A design pattern is a solution Yo a common
problem in the design of computer systems

= Reuse of publicly documented approaches to
solving problems (e.g., class diagrams)

= Plusses: long life-span, applicable beyond
current programming languages, applicable
beyond Object Orientation?

= Minuses: no immediate solution, no actual
code, knowledge hard to capture/reuse.

© 2004-2008 SEOC - Lecture Notes 05 8

Documenting Patters

= Name

= Problem

= Context

= Forces

= Solution

= Sketch

= Resulting context

= Rationale

© 2004-2008 SEOC - Lecture Notes 05

Classification of UML Patterns

= Creational
= Structural

= Behavioural

© 2004-2008 SEOC - Lecture Notes 05

10

Example: Builder Pattern

£ Package
= pirector = Builder
attributes o attributes
operations operations
Construct() BuildPart{
classes classes
= concreteBuilder
attributes
operations
BuilldPart{)
GetResult{)
classes

© 2004-2008 SEOC - Lecture Notes 05

EI Product

attributes
operations
classes

11

Example: Observer

© 2004-2008

Subject R hserver
+aktachio: COhserver) +Updatel)
+Detachio: Observer)

#nokify() /&\
Concretesubject ConcreteObserver
-attribuke: X e

update
+getatkribukbe)
+sekbAkkribukel)

SEOC - Lecture Notes 05

12

Example: State

Context

= L5 State
S state - context -state |, context

etStat
@, getState() | g 0.1 @i, oetContext()

etStat
@, zetState() @8, setCortext()

| State&, | StateB

© 2004-2008 SEOC - Lecture Notes 05

Example: Role-Based Access Control

User MemberOF Rale isAutharizedfar ProtectionObject
Right
© 2004-2008 SEOC - Lecture Notes 05

14

How to use a pattern

Does a patter exist that address the
considered problem?

Does the pattern's documentation suggest
alternative solutions?

Is there a simple solution?

Is the context of the pattern consistent
with the context of the problem?

Are the results of using the pattern
acceptable?

Are there constraints?

© 2004-2008 SEOC - Lecture Notes 05 15

Types of Software Reuse: Code Reuse

= Reuse of (visible) source code - code reuse
versus code salvage

= Pluses: reduces written code, reduces
development and maintenance costs

= Minuses: can increase coupling, substantial
initial investment

© 2004-2008 SEOC - Lecture Notes 05 16

Types of Software Reuse: Inheritance

= Using inheritance to reuse code behaviour

= Pluses: takes advantage of existing
behaviour, decrease development time and
cost

= Minuses: can conflict with component reuse,
can lead to fragile class hierarchy - difficult
to maintain and enhance

© 2004-2008 SEOC - Lecture Notes 05 17

Types of Software Reuse: Template Reuse

= Reuse of common data format/layout (e.g.,
document templates, web-page templates,
etc.)

= Pluses: increase consistency and quality,
decrease data entry time

= Minuses: needs to be simple, easy to use,
consistent among groups

© 2004-2008 SEOC - Lecture Notes 05 18

Types of Software Reuse: Component

= Analogy to electronic circuits: software
"plug-ins”

= Reuse of prebuilt, fully encapsulated
“components”; typically self-sufficient and
provide only one concept (high cohesion)

= Pluses: greater scope for reuse, common
platforms (e.g., JVM) more widespread,
third party component development

= Minuses: development time, genericity, need
large libraries to be useful

© 2004-2008 SEOC - Lecture Notes 05 19

Types of Software Reuse: Framework

= Collection of basic functionality of common
technical or business domain (generic
“circuit boards") for components

= Pluses: can account for 80% of code

= Minuses: substantial complexity, leading to
long learning process, platform specific,
framework compatibility issues leading to
vendor specificity, implement easy 80%

© 2004-2008 SEOC - Lecture Notes 05 20

Reuse Pitfalls
= Underestimating the difficulty of reuse

= Having or setting unrealistic expectations
= Not investing in reuse

= Being too focused on code reuse

= Generalising after the fact

= Allowing foo many connections

© 2004-2008 SEOC - Lecture Notes 05

Difficulties with Component Development

= Economic

- Small business do not have long term stability and
freedom required

= Where is the third party component
market?

+ Effort in (re)using components
* Cross-platform and cross-vendor compatibility
* Many common concepts, few common components

+ Some success: user interfaces, data management,
thread management, data sharing between
applications

* Most successful: 6UIs and data handling (e.qg.,
Abstract Data Types)

© 2004-2008 SEOC - Lecture Notes 05 22

Readings

= UML course textbook
» Chapter 17 on Design Patterns

= T. Winn, P. Calder, Is This a Pattern?. In
IEEE Software, January/February 2002.

© 2004-2008 SEOC - Lecture Notes 05 23

Summary

= Many types of reuse - of both knowledge
and software

» Each has pluses and minuses
= Component reuse is a form of software
reuse

. Enca sulation, hl%h cohesuon specified interfaces
exp |cu’r context dependencies

g\ponenjrr development requires significant time
effor

. As does component reuse

+ Component reuse has been successful for
inferfaces and data handling

= Employing reuse requires management

© 2004-2008 SEOC - Lecture Notes 05 24

