
Design Patterns

Massimo Felici

IF 3.46 0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2008 SEOC - Lecture Notes 05 2

Reuse in Software Engineering
Software Engineering is concerned with 
processes, techniques and tools which enable 
us to build “good” systems

Object-Orientation is a methodology, 
technique, process, suite of design and 
programming languages and tools with which 
we may build good systems

Components are units of reuse and 
replacement



© 2004-2008 SEOC - Lecture Notes 05 3

Examples of Types of reuse
Application system reuse: the whole of an 
application system may be reused by 
incorporating it without change into other 
systems

Component reuse: components of an 
application ranging in size from sub-systems 
to single objects may be reused

Object and function reuse: Software 
components that implement a single 
function, such as a mathematical function or 
an object class, may be reused



© 2004-2008 SEOC - Lecture Notes 05 4

Problems with reuse

Increased maintenance costs

Lack of tool support

Not-invented-here syndrome

Creating and maintaining a component 
library

Finding, understanding and adapting 
reusable components



© 2004-2008 SEOC - Lecture Notes 05 5

Planning Reuse: Key Factors

The development schedule for the software

The expected software lifetime

The background, skills and experience of the 
development team

The criticality of the software and its non-
functional requirements

The application domain

The platform on which the system will run



© 2004-2008 SEOC - Lecture Notes 05 6

Types of Reuse

Knowledge reuse
• Artificial reuse
• Pattern reuse

Software reuse
• Code reuse
• Inheritance reuse
• Template reuse
• Components
• Framework reuse



© 2004-2008 SEOC - Lecture Notes 05 7

Reuse of Knowledge: Artifact Reuse

Reuse of use cases, standards, design 
guidelines, domain-specific knowledge

Pluses: consistency between projects, 
reduced management burden, global 
comparators of quality and knowledge

Minuses: overheads, constraints on 
innovation (coder versus manager)



© 2004-2008 SEOC - Lecture Notes 05 8

Reuse of Knowledge: Patterns
A design pattern is a solution to a common 
problem in the design of computer systems

Reuse of publicly documented approaches to 
solving problems (e.g., class diagrams)

Plusses: long life-span, applicable beyond 
current programming languages, applicable 
beyond Object Orientation?

Minuses: no immediate solution, no actual 
code, knowledge hard to capture/reuse.



© 2004-2008 SEOC - Lecture Notes 05 9

Documenting Patters

Name

Problem

Context

Forces

Solution

Sketch

Resulting context

Rationale



© 2004-2008 SEOC - Lecture Notes 05 10

Classification of UML Patterns

Creational

Structural

Behavioural



© 2004-2008 SEOC - Lecture Notes 05 11

Example: Builder Pattern



© 2004-2008 SEOC - Lecture Notes 05 12

Example: Observer



© 2004-2008 SEOC - Lecture Notes 05 13

Example: State



© 2004-2008 SEOC - Lecture Notes 05 14

Example: Role-Based Access Control



© 2004-2008 SEOC - Lecture Notes 05 15

How to use a pattern

Does a patter exist that address the 
considered problem?
Does the pattern’s documentation suggest 
alternative solutions?
Is there a simple solution?
Is the context of the pattern consistent 
with the context of the problem?
Are the results of using the pattern 
acceptable?
Are there constraints?



© 2004-2008 SEOC - Lecture Notes 05 16

Types of Software Reuse: Code Reuse

Reuse of (visible) source code – code reuse 
versus code salvage

Pluses: reduces written code, reduces 
development and maintenance costs

Minuses: can increase coupling, substantial 
initial investment



© 2004-2008 SEOC - Lecture Notes 05 17

Types of Software Reuse: Inheritance

Using inheritance to reuse code behaviour

Pluses: takes advantage of existing 
behaviour, decrease development time and 
cost

Minuses: can conflict with component reuse, 
can lead to fragile class hierarchy – difficult 
to maintain and enhance



© 2004-2008 SEOC - Lecture Notes 05 18

Types of Software Reuse: Template Reuse

Reuse of common data format/layout (e.g., 
document templates, web-page templates, 
etc.)

Pluses: increase consistency and quality, 
decrease data entry time

Minuses: needs to be simple, easy to use, 
consistent among groups



© 2004-2008 SEOC - Lecture Notes 05 19

Types of Software Reuse: Component

Analogy to electronic circuits: software 
“plug-ins”

Reuse of prebuilt, fully encapsulated 
“components”; typically self-sufficient and 
provide only one concept (high cohesion)

Pluses: greater scope for reuse, common 
platforms (e.g., JVM) more widespread, 
third party component development

Minuses: development time, genericity, need 
large libraries to be useful



© 2004-2008 SEOC - Lecture Notes 05 20

Types of Software Reuse: Framework

Collection of basic functionality of common 
technical or business domain (generic 
“circuit boards”) for components

Pluses: can account for 80% of code

Minuses: substantial complexity, leading to 
long learning process, platform specific, 
framework compatibility issues leading to 
vendor specificity, implement easy 80%



© 2004-2008 SEOC - Lecture Notes 05 21

Reuse Pitfalls

Underestimating the difficulty of reuse

Having or setting unrealistic expectations

Not investing in reuse

Being too focused on code reuse

Generalising after the fact

Allowing too many connections



© 2004-2008 SEOC - Lecture Notes 05 22

Difficulties with Component Development

Economic
• Small business do not have long term stability and 

freedom required

Where is the third party component 
market?
• Effort in (re)using components
• Cross-platform and cross-vendor compatibility
• Many common concepts, few common components
• Some success: user interfaces, data management, 

thread management, data sharing between 
applications

• Most successful: GUIs and data handling (e.g., 
Abstract Data Types)



© 2004-2008 SEOC - Lecture Notes 05 23

Readings

UML course textbook
• Chapter 17 on Design Patterns

T. Winn, P. Calder, Is This a Pattern?. In 
IEEE Software, January/February 2002.



© 2004-2008 SEOC - Lecture Notes 05 24

Summary
Many types of reuse – of both knowledge 
and software
• Each has pluses and minuses

Component reuse is a form of software 
reuse
• Encapsulation, high cohesion, specified interfaces 

explicit context dependencies
• Component development requires significant time 

and effort
• As does component reuse
• Component reuse has been successful for 

interfaces and data handling
Employing reuse requires management


