
Requirements Engineering

Massimo Felici

IF-3.46 0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2008 SEOC - Lecture Notes 02 2

10 Top Reasons for Not Doing Requirements

We don't need requirements,
we're using objects, java,
web...

The users don't know what
they want

We already know what the
users want

Who cares what the users
want?

We don't have time to do
requirements

It's too hard to do
requirements

My boss frowns when I write
requirements

The problem is too complex
to write requirements

It's easier to change the
system later than to do the
requirements up front

We have already started
writing code, and we don't
want to spoil it

© 2004-2008 SEOC - Lecture Notes 02 3

Requirements Engineering Activities

Requirements
Elicitation

Requirements
Analysis

and Negotiation

Requirements
Documentation

Requirements
Validation

User needs,
domain

information,
existing system

information,
regulations,

standards, etc.

Requirements
Document

System
Specification

Agreed
Requirements

© 2004-2008 SEOC - Lecture Notes 02 4

Requirements Elicitation Activities

Application domain understanding
• Application domain knowledge is knowledge of the general

area where the system is applied

Problem understanding
• The details of the specific customer problem where the

system will be applied must be understood

Business understanding
• You must understand how systems interact and contribute to

overall business goals

Understanding the needs and constraints of
system stakeholders
• You must understand, in detail, the specific needs of people

who require system support in their work

© 2004-2008 SEOC - Lecture Notes 02 5

Requirements Elicitation Techniques

Interviews with stakeholders
• Close/Open (Structured/Unstructured),

Facilitated Meetings (e.g., professional group work)
Scenarios
• Elicit the “usual” flow of work
• Are stories which explain how a system might be

used
• Expose possible system interactions and reveal

system facilities which may be required
Prototypes
• mock-up using paper, diagrams or software
Observations
• Observing “real world” work

© 2004-2008 SEOC - Lecture Notes 02 6

Requirements Analysis

Discovers problems, incompleteness and
inconsistencies in the elicited requirements

A problem checklist may be used to support
analysis

A Problem Checklist
• Premature design
• Combined requirements
• Unnecessary requirements
• Requirements ambiguity
• Requirements realism
• Requirements testability

© 2004-2008 SEOC - Lecture Notes 02 7

Non-functional Requirements

Non-functional requirements (e.g., safety,
security, usability, reliability, etc.) define
the overall qualities or attributes of the
resulting system

Constraints on the product being developed
and the development process

Warnings: unclear distinction between
non-functional and functional requirements

© 2004-2008 SEOC - Lecture Notes 02 8

Other Activities

Constructing specifications
• System requirements definition: customer facing,

at system level
• Software Requirements Specification: developer

facing, at software level

Requirements validation
• define the acceptance test with stakeholders

Requirements Management
• Manage requirements and maintain traceability
• Requirements change because the environment

changes and there is a need to evolve

© 2004-2008 SEOC - Lecture Notes 02 9

How to organize requirements?

Software Requirements Specification (SRS)
• The SRS document is a structured documents that containing

the identified requirements

The VOLERE Template identifies the following
SRS main parts:
• PROJECT DRIVERS (e.g., The Purpose of the Product,

Stakeholders, etc.)
• PROJECT CONSTRAINTS (e.g., Costs)
• FUNCTIONAL REQUIREMENTS
• NON-FUNCTIONAL REQUIREMENTS (e.g., Usability,

Performance, Operational, Maintainability, Portability,
Safety, Reliability, Security, Cultural, etc.)

• PROJECT ISSUES (e.g., Open Issues, Risks, Evolution, etc.)

© 2004-2008 SEOC - Lecture Notes 02 10

Requirements Engineering Practices

Examples of Requirements Engineering
practices are:

Define a standard document structure
• For example, tailor a standard requirements

specification template to your needs

Identify requirements uniquely
• For example, number each requirements specified

in the requirements documentation

© 2004-2008 SEOC - Lecture Notes 02 11

Readings

Requirements Specification Template
• J. Robertson, S. Robertson. VOLERE: Requirements

Specification Template. Edition 10.1, Atlantic
Systems Guild.

I. Sommerville. Integrated Requirements
Engineering: A Tutorial. IEEE Software,
January/February 2005, pp. 16-23.
J. Boegh, S. De Panfilis, B. Kitchenham, A.
Pasquini. A Method for Software Quality
Planning, Control, and Evaluation. IEEE
Software, March/April 1999, pp. 69-77.

© 2004-2008 SEOC - Lecture Notes 02 12

Suggested Readings

I. Sommerville, P. Sawyer. Requirements
Engineering: A Good Practice Guide. John Wiley &
Sons, 1997.
G. Kotonya, I. Sommerville. Requirements
Engineering: Processes and techniques. John Wiley
& Sons, 1998.
M. Jarke. Requirements Tracing. Communications of
the ACM, Vol. 41, No. 12, December 1998.
S. Robertson, J. Robertson. Mastering the
Requirements Process. Addison-Wesley, 1999.
I. Sommerville. Software Engineering, Eighth
Edition, Addison-Wesley 2007.
• Chapter 6 on Software Requirements
• Chapter 7 on Requirements Engineering Processes

© 2004-2008 SEOC - Lecture Notes 02 13

Summary

Requirements engineering
• Involves diverse activities
• Supports the construction of quality systems

Issues are very wide ranging
• Poor requirements lead to very poor systems
• Negotiating agreement between all the

stakeholders is hard

In some application areas it may be possible
to use a more formal notation to capture
some aspects of the system (e.g., control
systems, compilers, …)

VolBank - Volunteer Bank

© 2004-2008 SEOC - Lecture Notes 02 15

VolBank: Requirements

1. To develop a system that will handle the
registration of volunteers and the
depositing of their time.

2. To handle recording of opportunities for
voluntary activity.

3. To match volunteers with people or
organizations that need their skills.

4. To generate reports and statistics on
volunteers, opportunities an time
deposited.

© 2004-2008 SEOC - Lecture Notes 02 16

VolBank: Elicitation
Goals (why the system is being developed)
• An high level goal is to increase the amount of volunteer effort

utilized by needy individuals and organizations
• Possible requirements in measurement and monitoring

Domain Knowledge
• Some specific requirements, e.g., Safety and Security

Stakeholders
• volunteers, organizations, system administrators, needy people,

operator, maintenance, manager

Operational Environment
• Probably constrained by software and hardware in the office

Organizational Environment
• legal issues of keeping personal data, safety issues in “matching”

© 2004-2008 SEOC - Lecture Notes 02 17

VolBank: Examples of requirements

Volunteer identifies:
1. The need for security/assurance in contacting

organizations, …

Management identifies:
1. The number of hours volunteered per month

above a given baseline as the key metric

Operator identifies:
1. The need to change details when people move

home
2. The need to manage disputes when a volunteer is

unreliable, or does bad work

© 2004-2008 SEOC - Lecture Notes 02 18

VolBank: Analysis and Classification

Functional Requirements
• The system allows a volunteer to be added to the

register of volunteers. The following data will be
recorded:...

Non-functional Requirements
• The system ensures confidentiality of personal

data and will not release it to a third party
• The system ensures the safety of all participants

© 2004-2008 SEOC - Lecture Notes 02 19

VolBank: A Failed Match Scenario
Goal: to handle failure of a match

Context: the volunteer and organization have been
matched and a date for a preliminary meeting
established

Resources: time for volunteer and organization

Actors: volunteer, operator, organization

Episodes:
• The volunteer arrives sees the job to be done and decides

(s)he cannot do it
• Organization contacts operator to cancel the match and

reorganize

Exceptions: volunteer fails to show up

© 2004-2008 SEOC - Lecture Notes 02 20

VolBank: Conceptual Modeling

Process of requirements engineering is usually
guided by a requirements method
Requirement methods are systematic ways of
producing system models
System models important bridges between the
analysis and the design process
Begin to identify classes of object and their
associations:
• volunteer, contact details, match, skills, organization, needs,

etc.
Start to consider some high level model of the
overall workflow for the process using modeling
tools

© 2004-2008 SEOC - Lecture Notes 02 21

VolBank: Design and Allocation

How do we allocate requirements?
• The system shall ensure the safety of all participants?

Further analysis to identify principal threats:
• Safety of the volunteer from hazards at the work site
• Safety of the organizations from hazards of poor or

inadequate work
• Safety of people from volunteers with behavioural problems
• …

Design might allow us to allocate:
• 1 to an information sheet
• 2 to a rating component and procedures on allocating work
• 3 to external police register
• …

© 2004-2008 SEOC - Lecture Notes 02 22

VolBank: Negotiation

Safety and Privacy requirements
• may be inconsistent or conflicting
• need to modify one or both
• Privacy: only authorized releases for safety

checks will be permitted and there is a procedure
for feeding back to the individual if a check fails.

Some requirements may be achievable but
only at great effort
• Attempt to downscale
• Prioritize
• It may be too much effort to implement a fault

reporting system in the first release of the
system

The SEOC Process
Part I

© 2004-2008 SEOC - Lecture Notes 02 24

The SEOC process – Part I

1. Gathering Requirements
• Writing a Requirements Specification Document

(e.g., see the VOLERE template)

2. Capturing functional requirements into Use
Cases

• Describe use cases by a Use Case Template

3. Modelling a preliminary system design into
Class Diagrams

4. Validating your design by CRC cards

© 2004-2008 SEOC - Lecture Notes 02 25

The SEOC process – Part I

1. Requirements

2. Use Cases

3. Class Diagrams

4. Validation

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 26

The SEOC Project Deliverable 1

1. Requirements Specification

2. Use Case Model

3. Class Model

4. Validation of Class Model

5. Deliverable Assessment

© 2004-2008 SEOC - Lecture Notes 02 27

SEOC Activity Deliverables

The SEOC Process Deliverable 1

Requirements
Specification

Use Case Model

Class Model

Validation of Class
Model

Deliverable Assessment

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 28

Deliverable 1 Assessment

Deliverable 1

Requirements
Specification

Use Case Model

Class Model

Validation of Class
Model

Part 3 - Deliverable Marking Scheme

Deliverable Marking Scheme

Deliverable
Part

Questions Marks

Requirements Q1. Did you organise/collect the system requirements by using
a Requirements Specification template (e.g., Volere)? Assess the
quality of your Software Requirements Specification (SRS) docu-
ment.

[/ 5]

Marks Limit:
[20/100]

Q2. Did you distinguish different types of requirements (e.g., func-
tional or non-functional)? Assess how your SRS identifies different
types of requirements.

[/ 5]

Q3. Do you believe you got most of the system requirements
(requirements completeness)? Assess the extent to which you have
elicited and gathered requirements from the main sources.

[/ 5]

Q4. Have you identified/resolved conflicting requirements (re-
quirements correctness)? Assess the extent to which you have
resolved conflicting requirements among different types (e.g., func-
tional and non-functional) or across teams.

[/ 5]

Use Cases Q5. Did you graphically represent the functional requirements by
Use Cases? Assess to which extent your use case diagram captures
main system functionalities and actors.

[/ 10]

Marks Limit:
[30/100]

Q6. Did you refine the use cases by generalization, include or
extend relationships? Assess to which extent you have refined and
structured use cases.

[/ 10]

Q7. Did you use a template for describing use cases? Assess to
which extent you have clarified and described use case information
(completeness and correctness).

[/ 10]

Class
Diagrams

Q8. Does your class diagram identify the main classes of the
system? Assess to which extent your class diagram realizes system
use cases.

[/ 10]

Marks Limit:
[30/100]

Q9. Did you specify Attributes and Operations for each class?
Assess the completeness of class specification.

[/ 10]

Q10. Did you identify relationships (i.e., Dependency, Associa-
tion, Aggregation, Composition and Inheritance or Generalization)
between classes? Assess the object orientation quality of your class
diagram.

[/ 10]

CRC
Cards

Q11. Did you construct CRC cards for your system design? Assess
the completeness and correctness of CRC cards.

[/ 10]

Marks Limit:
[20/100]

Q12. Did you verify your Class Diagrams? Did you play any
use case with the CRC Cards in order to verify your class dia-
gram? Assess the quality and the coverage of your requirements
and design verification by CRC cards.

[/ 10]

Deliverable Mark [/100]

CARMATCH

© 2004-2008 SEOC - Lecture Notes 02 30

CARMATCH Background

CARMATCH is a franchising company that is being
set up to promote car sharing
Organizational goal: reduce carbon emissions
CARMATCH seeks to promote car sharing
• Matching potential car sharers

CARMATCH consists of a three layer structure:
(non-for-profit trust) global operation; national
central operating company; local franchises
In some countries, it offers insurances
Main Profits: membership fees, consultancies,
insurance commissions
CARMATCH needs (has the requirements for) a
computer system that can be used by its
franchisees

© 2004-2008 SEOC - Lecture Notes 02 31

CARMATCH Requirements

1. To develop a system that will hold information
about members of the CARMATCH scheme

2. To match members up with other members as car
sharers

3. To record insurance sales

4. To record details of potential and actual
consultancy in the area of operation

5. The system must be capable of future expansion
to incorporate information about toll and road-
pricing and equipment sold to and installed for
members

© 2004-2008 SEOC - Lecture Notes 02 32

CARMATCH Requirements Specification

The System
Requirements Specification

Version ...

Table of Contents
PROJECT DRIVERS

1. The Purpose of the Project
2. Client, Customer and other Stakeholders
3. Users of the Product

PROJECT CONSTRAINTS
4. Mandated Constraints
5. Naming Conventions and Definitions
6. Relevant Facts and Assumptions

FUNCTIONAL REQUIREMENTS
7. The Scope of the Work
8. The Scope of the Product
9. Functional and Data Requirements

NON-FUNCTIONAL REQUIREMENTS
10. Look and Feel Requirements
11. Usability and Humanity Requirements
12. Performance Requirements
13. Operational Requirements
14. Maintainability and Support Requirements
15. Security Requirements
16. Cultural and Political Requirements
17. Legal Requirements

PROJECT ISSUES
18. Open Issues
19. Off-the-Shelf Solutions
20. New Problems
21. Tasks
22. Cutover
23. Risks
24. Costs
25. User Documentation and Training
26. Waiting Room
27. Ideas for Solutions

Specification prepared by .. Date

Project Drivers
• CARMATCH background
• CARMATCH organization, Local

governments, EU?, Locan
franchises, car sharers, etc.

• System Users?
Project Constraints
• Budget, Deadlines, Laws, etc.?
Functional Requirements

1. To hold information about
members
1. 1
2. 2
3. 3

2. To match car sharers
3. To record insurance sales
4. To record details consultancies

Non-functional Requirements
Project Issues

© 2004-2008 SEOC - Lecture Notes 02 33

Requirements Specification

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 34

CARMATCH Actors and Use Cases

© 2004-2008 SEOC - Lecture Notes 02 35

CARMATCH System Use cases

© 2004-2008 SEOC - Lecture Notes 02 36

CARMATCH Use Case Description

Non-Functional (optional): List of non-functional requirements that the use case must meet.

Issues: List of issues that remain to be solved

Variations (optional): any variations in the steps of a use case

Steps:

1. The CARMATCH Administrator enters name, address and all requested (mandatory)
information of the car sharer in system entry window

2. The CARMATCH Administrator enters sharing information (e.g., time, starting address,
car type, etc.)

3. …

Assumptions: the CARMATCH Administrator has to confirm information, and the car sharer has
to accept CARMATCH policy

Actors: CARMATCH Administrator, Car sharer

Description: The registration of the car sharer information and the association with a
membership number

Use Case: Register car sharer

© 2004-2008 SEOC - Lecture Notes 02 37

Use Cases

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 38

CARMATCH Class Diagram

© 2004-2008 SEOC - Lecture Notes 02 39

Class Diagram

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 40

CARMATCH Validation

carSharer

Address

Journey

Record
personal
information

Record
Address

Record
Journeys

Address

Record
Address

Journey

Record
journey
Times

Record
journey
Addresses

Find journey
matches

Address

© 2004-2008 SEOC - Lecture Notes 02 41

CARMATCH: Register car sharer

carSharer

Address

Journey

Record
personal
information

Record
Address

Record
Journeys

Address

Record
Address

Ne
w
Us
e
Ca
se

© 2004-2008 SEOC - Lecture Notes 02 42

CARMATCH: Register Journey

carSharer

Address

Journey

Record
personal
information

Record
Address

Record
Journeys Address

Record
Address

Journey

Record
journey
Times

Record
journey
Addresses

Find journey
matches

AddressAddress

Record
Address

© 2004-2008 SEOC - Lecture Notes 02 43

CARMATCH new requirements

Efficiency: maximize the combination of
journeys by combining multiple stops (i.e.,
journeys)

Note that it is a non-functional
requirements

Are there any implications? How does it
affect your preliminary design?

© 2004-2008 SEOC - Lecture Notes 02 44

CARMATCH Changes

© 2004-2008 SEOC - Lecture Notes 02 45

CARMATCH validation

1

2

3

4

© 2004-2008 SEOC - Lecture Notes 02 46

Assessment

1
2

3
4

Part 3 - Deliverable Marking Scheme

Deliverable Marking Scheme

Deliverable
Part

Questions Marks

Requirements Q1. Did you organise/collect the system requirements by using
a Requirements Specification template (e.g., Volere)? Assess the
quality of your Software Requirements Specification (SRS) docu-
ment.

[/ 5]

Marks Limit:
[20/100]

Q2. Did you distinguish different types of requirements (e.g., func-
tional or non-functional)? Assess how your SRS identifies different
types of requirements.

[/ 5]

Q3. Do you believe you got most of the system requirements
(requirements completeness)? Assess the extent to which you have
elicited and gathered requirements from the main sources.

[/ 5]

Q4. Have you identified/resolved conflicting requirements (re-
quirements correctness)? Assess the extent to which you have
resolved conflicting requirements among different types (e.g., func-
tional and non-functional) or across teams.

[/ 5]

Use Cases Q5. Did you graphically represent the functional requirements by
Use Cases? Assess to which extent your use case diagram captures
main system functionalities and actors.

[/ 10]

Marks Limit:
[30/100]

Q6. Did you refine the use cases by generalization, include or
extend relationships? Assess to which extent you have refined and
structured use cases.

[/ 10]

Q7. Did you use a template for describing use cases? Assess to
which extent you have clarified and described use case information
(completeness and correctness).

[/ 10]

Class
Diagrams

Q8. Does your class diagram identify the main classes of the
system? Assess to which extent your class diagram realizes system
use cases.

[/ 10]

Marks Limit:
[30/100]

Q9. Did you specify Attributes and Operations for each class?
Assess the completeness of class specification.

[/ 10]

Q10. Did you identify relationships (i.e., Dependency, Associa-
tion, Aggregation, Composition and Inheritance or Generalization)
between classes? Assess the object orientation quality of your class
diagram.

[/ 10]

CRC
Cards

Q11. Did you construct CRC cards for your system design? Assess
the completeness and correctness of CRC cards.

[/ 10]

Marks Limit:
[20/100]

Q12. Did you verify your Class Diagrams? Did you play any
use case with the CRC Cards in order to verify your class dia-
gram? Assess the quality and the coverage of your requirements
and design verification by CRC cards.

[/ 10]

Deliverable Mark [/100]

