
Software Engineering 
with Objects and Components

Massimo Felici

IF-3.46 0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2008 SEOC - Lecture Notes 01 2

Course Organization

SEOC course webpage

http://www.inf.ed.ac.uk/teaching/courses/seoc/

Mailing List

seoc-students@inf.ed.ac.uk

Newsgroup

eduni.inf.course.seoc1

SEOC CVS repositories



© 2004-2008 SEOC - Lecture Notes 01 3

Course Organization

Course Textbook

UML, Second Edition, by Simon Bennet, John 
Skelton and Ken Lunn, Schaum's Outline 
Series, McGraw-Hill, 2005 

Course Resources
Lecture Notes and References

Software
Eclipse + UML plug-ins and Java



© 2004-2008 SEOC - Lecture Notes 01 4

Course Organization

Tutorials begin in week 3
• Frequency: once a week
• Maximum 12 people per tutorial group

Coursework
• in small teams (approx 3-4 people)
• two deliverables equally weighted
• Deadlines

• 1st deliverable: Friday, 31st October
• 2nd deliverable: Friday, 28th November

Assessment
• 25% coursework; 75% degree examination



© 2004-2008 SEOC - Lecture Notes 01 5

What is Software Engineering?

Software Engineering is an engineering 
discipline that is concerned with all aspects 
of software production from the early stages 
of system specification to maintaining the 
system after it has gone into use.



© 2004-2008 SEOC - Lecture Notes 01 6

Some Software Engineering Aspects

Software Processes

Software Process Models

Software Engineering Methods

Costs

Software Attributes

Tools

Professional and Ethical Responsibilities



© 2004-2008 SEOC - Lecture Notes 01 7

Why Software Fails?

Complex causes (interactions) trigger 
software failures

Software fails in context

Some issues related to software engineering
• Misunderstood requirements
• Design issues
• Mistakes in specification, design or implementation
• Operational issues

Faults, Errors and Failures



© 2004-2008 SEOC - Lecture Notes 01 8

Faults, Errors and Failures

Some definitions:
• Fault – The adjudged or hypothesized cause of a 

an error is called a fault. A fault is active when it 
causes an error, otherwise it is dormant.

• Error – The deviation from a correct service state 
is called an error. An error is the part of the total 
state of the system that may lead to its 
subsequent service failure.

• Failure – A failure is an event that occurs when 
the delivered service deviates from correct 
service.

Warnings: different understandings of faults, 
errors and failures.



© 2004-2008 SEOC - Lecture Notes 01 9

Some “Famous” Software Failures

Patriot Missile failure
• Inaccurate calculation of the time since boot due to 

computer arithmetic errors.
• Coding errors may effect overall software system behaviour.

The Ariane 5 Launcher failure
• the complete loss of guidance and altitude information 37 

seconds after start of the main engine ignition sequence.
• The loss of information was due to specification and design 

errors in the software of the inertial reference system.
• The software that failed was reused from the Ariane 4 

launch vehicle. The computation that resulted in overflow was 
not used by Ariane 5. 

The London Ambulance fiasco
Therac 25 and other medical device failures
• (Software) Reliability is different than (System) Safety



© 2004-2008 SEOC - Lecture Notes 01 10

An Example: The Patriot Missile Failure

Accident Scenario: On February 25, 1991, 
during the Gulf War, an American Patriot 
Missile battery in Dharan, Saudi Arabia, failed 
to track and intercept an incoming Iraqi Scud 
missile. The Scud struck an American Army 
barracks, killing 28 soldiers and injuring 
around 100 other people.



© 2004-2008 SEOC - Lecture Notes 01 11

The Patriot Missile continued…

Fault – Inaccurate calculation of the time since 
boot due to computer arithmetic errors. 
Error – The small chopping error, when multiplied 
by the large number giving the time in tenths of a 
second, lead to a significant error of 0.34 
seconds. 
Failure – A Scud travels at about 1,676 meters per 
second, and so travels more than 500 meters in this 
time. This was far enough that the incoming Scud 
was outside the range gate that the Patriot 
tracked. 



© 2004-2008 SEOC - Lecture Notes 01 12

The Patriot Missile …conclusions

Identifying coding errors is very hard 
• seemingly insignificant errors result in major 

changes in behaviour

Original fix suggested a change in 
procedures
• reboot every 30 hours – impractical in operation

Patriot is atypical
• coding bugs rarely cause accidents alone

Maintenance failure
• failure of coding standards and traceability



© 2004-2008 SEOC - Lecture Notes 01 13

Supporting Software Engineering Practices

UML provides a range of graphical notations
that capture various aspects of the 
engineering process
Provides a common notation for various 
different facets of systems
Provides the basis for a range of 
consistency checks, validation and 
verification procedures
Provides a common set of languages and 
notations that are the basis for creating 
tools



© 2004-2008 SEOC - Lecture Notes 01 14

Some UML diagrams

Use Case Diagrams

Class Diagrams

Interaction Diagrams
• Sequence and Communication Diagrams

Activity Diagrams

State Machines



© 2004-2008 SEOC - Lecture Notes 01 15

Readings

UML course textbook
• Chapter 1 on the Introduction to the Case Studies.
• Chapter 2 on the Background to UML

B. Meyer. Software Engineering in the Academy. IEEE Computer, 
May 2001, pp. 28-35.
R.N. Charette. Why Software Fails. IEEE Spectrum, pp. 42-49, 
September 2005.
B. Nuseibeh. Ariane 5: Who Dunnit? IEEE Software, pp. 15-16, 
May/June 1997.
J.-M. Jézéquel, B. Meyer. Design by Contract: The Lessons of 
Ariane. IEEE Computer, pp. 129-130, January 1997.
M. Grottke, K.S. Trivedi. Fighting Bugs: Remove, Retry, 
Replicate, and Rejuvenate. IEEE Computer, pp. 107-109, 
February 2007.
Rational Unified Process: Best Practice for Software 
Development Teams: Rational Software White Paper, TP026, Rev 
11/01.



© 2004-2008 SEOC - Lecture Notes 01 16

Suggested Readings

I. Sommerville. Software Engineering, Eighth Edition, Addison-
Wesley 2007.
• Chapter 1 for a general account of Software Engineering
• Chapter 3 on Critical Systems
• Chapter 4 on Software Processes

SWEBOK - Guide to the Software Engineering Body of Knowledge. 
2004 Version, IEEE.
A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts 
and Taxonomy of Dependable and Secure Computing. IEEE 
Transactions on Dependable and Secure Computing 1(1):11-33, 
January-March 2004.
N.G. Leveson, C.S. Turner. An investigation of the Therac-25 
accidents. IEEE Computer 26(7): 18-41, Jul 1993.
D.R. Wallace, D.R. Kuhn. Lessons from 342 Medical Device Failures. 
In Proceedings of HASE 1999, pp. 123-131. 
G. Cernosek, E. Naiburg. The Value of Modeling. Rational Software, 
Copyright IBM Corporation 2004. 



© 2004-2008 SEOC - Lecture Notes 01 17

Summary

SEOC organization

An introduction to Software Engineering

Why Software Fails

Faults, Errors and Failures

Examples of Software Failures

An Outline of some UML diagrams

Readings and Suggested Readings


