
0018-9162/01/$10.00 © 2001 IEEE28 Computer

Software
Engineering in
the Academy

T here is no universally accepted definition of software engineering.
For some, software engineering is just a glorified name for program-
ming. If you are a programmer, you might put “software engineer”
on your business card but never “programmer.” Others have higher
expectations. A textbook definition of the term might read something

like this: “the body of methods, tools, and techniques intended to produce qual-
ity software.”

Rather than just emphasizing quality, we could distinguish software engi-
neering from programming by its industrial nature, leading to another definition:
“the development of possibly large systems intended for use in production envi-
ronments, over a possibly long period, worked on by possibly many people, and
possibly undergoing many changes,” where “development” includes manage-
ment, maintenance, validation, documentation, and so forth.

David Parnas, a pioneer in the field, emphasizes the “engineering” part and
advocates1 a software engineering education firmly rooted in traditional engi-
neering—including courses on materials and the like—and split from computer
science the way electrical engineering is separate from physics.

Because this article presents a broad perspective on software education, I will
not settle on any of these definitions; rather, I would like to accept that they are
all in some way valid and retain all the views of software they encompass. In
fact, I am not just focusing on the “software engineering courses” traditionally
offered in many universities but more generally on how to instill software engi-
neering concerns into an entire software curriculum.

If not everyone agrees on the definition of the discipline, few question its
importance. We might have wished for less embarrassing testimonials of our
work’s societal relevance than the Y2K scare, but it is still fresh enough in every-
one’s mind to remind us how much the world has come to rely on software sys-
tems. The institutions that teach software—either as part of computer science
or in a specific software engineering program—are responsible for producing
software professionals who will build and maintain these systems to the satis-
faction of their beneficiaries.

SOFTWARE PROFESSIONALS
Judging by the employment situation, current and future graduates can be happy

with their choice of studies. The Information Technology Association of America
estimated in April 20002 that 850,000 IT jobs would go unfilled in the next 12
months. The dearth of qualified personnel is just as perceptible in Europe and
Australia. Salaries are excellent. Project leaders wake up at night worrying about
headhunters hiring away some of their best developers—or pondering the latest
offers they received themselves.

Institutions that teach
software are responsible
for producing
professionals who will
build and maintain
systems to the
satisfaction of their
beneficiaries. This
article presents some
ideas on how best to
honor this
responsibility.

Bertrand Meyer
Interactive Software Engineering

P E R S P E C T I V E S

Although this trend shows no sign of abating in the
near future, we should not take the situation for
granted. An economic downturn can make employ-
ers more choosy. In addition, more people are learn-
ing how to do some programming, aided by the
growing sophistication of development tools for the
mass market. It is likely, for example, that many of
the estimated six million people who are Visual Basic
developers have not received a formal computer sci-
ence education. This creates competition and will
force the real professionals to stand out.

In fact, talking to managers in industry reveals that
they are not just looking for employees—they are
looking for excellent developers. This is the really
scarce resource. The software engineering literature
confirms3 that ratios of 20 are not uncommon
between the quality of the work of the best and worst
developers in a project; managers and those who make
hiring decisions soon learn to recognize where a can-
didate fits into this spectrum. The aim of a top edu-
cational program is to train people who will belong
to the top tier.

Reflecting on why life has been so good, we may
note that our constituency—the people who commis-
sion and use our systems—has been remarkably tol-
erant of our deficiencies. Users grumble about
software, but get on with it. This may not last forever.
Although relatively few people overall have been killed
through the fault of software systems—a few dozen
known cases so far,4 a record that many well-estab-
lished engineering disciplines might envy—a few high-
profile cases would suffice to alert the public to the
haphazardness of many of our methods.

Even if no such event occurs, the current problems
with software have been serious enough to lead some
government authorities, such as the state of Texas,
to require licensing. Whatever you think of these ini-
tiatives (supported by Parnas’s view that software
engineers should indeed be licensed and registered),
they reflect a general trend toward distinguishing the
true software professional from the occasional pro-
grammer.

These trends have important consequences for uni-
versities. While just teaching use of the tools fashion-
able at a certain time may curry favor with students
and their families (who can relate them to the skills
most often requested in employment ads), doing so is
not necessarily the best service you can give to future
professionals. What matters is teaching them funda-
mental modes of thought that will accompany them
throughout their careers and help them grow in this
ever-changing field. The ones who blossom are those
who can rise beyond the tools of the moment in har-
mony with the progress of the discipline.

This does not mean that we should neglect the tools
of the trade. In any engineering discipline, these tools

constitute a good part of the profes-
sional’s bag of tricks. We must, how-
ever, look beyond them to the
fundamental concepts, which have
not changed significantly since they
emerged when the field took shape
some 30 years ago. As in hardware
design, the technology evolves, but
the concepts remain.

FIVE GOALS OF A CURRICULUM
A software curriculum should in-

volve five complementary elements:

• principles: lasting concepts that
underlie the whole field;

• practices: problem-solving tech-
niques that good professionals
apply consciously and regularly;

• applications: areas of expertise in which the prin-
ciples and practices find their best expression;

• tools: state-of-the-art products that facilitate the
application of these principles and practices; and

• mathematics: the formal basis that makes it pos-
sible to understand everything else.

Principles
Among the most important things that professional

software engineers know are concepts that recur
throughout their work. Most of these concepts are not
specific techniques. If they include a technique, they go
beyond it to encompass a mode of reasoning. This
defines the most exciting aspect of being a professional
software engineer: the mastery of some of these pow-
erful and elegant intellectual schemes that, more than
any particular trick of the trade, constitute our profes-
sion’s common treasure. Most of them cannot be taught
in one sitting but rather are learned little by little
through trial, error, and skillful mentoring. I retain the
same awe that I first felt when I started discovering
them, and they make up the most important, if some-
times immaterial, body of knowledge that, as a teacher,
I try to impart to novices.

The sidebar “The Principles: What Software
Professionals Know” characterizes a few of these
concepts. This list is not complete, but it should suf-
fice to illustrate that much of what we have to teach
we cannot just teach through words; it is a set of
creative concepts that will come little by little as the
amateur programmer progresses toward mastery of
the trade.

Most of the people who are now in a position to
influence a software curriculum started their careers
when computers were an esoteric subject—just know-
ing how to use them set you apart from the rest of the
population. Times have changed. Today, as Dennis

May 2001 29

Although relatively few people
have been killed through the
fault of a software system, a
few high-profile cases would

suffice to alert the public
to the haphazardness of
many of our methods.

30 Computer

Much of the body of software engi-
neering knowledge consists of a set of
recurring concepts that software profes-
sionals learn through trial, error, and
skillful mentoring.

• Abstraction. This is our key intellec-
tual tool—the ability to separate the
essential from the auxiliary, to see the
idea that presides over the realization
and that it might initially hide.

• Distinction between specification
and implementation. Getting this
distinction right is a constant theme
in software discussions:

“This is only an implementation
detail!” “No, it’s really part of
what we want to do.” “No, it’s
only one way of doing it!”
“Show me another!” “It doesn’t
matter that I don’t see another
way at the moment; someone
could come up with one later.”

This problem is unique to software
because we deal with virtual, ethe-
real quantities. No one would con-
fuse a bridge with the drawing of the
bridge or a car with the plan of the
car. You will not fall off the drawing
into the water, and you cannot get
run over by the plan. But in software,
the distinction is often far from clear;
unlike in Magritte’s painting, we con-
stantly risk confusing the pipe and
the picture of the pipe. Learning to
focus on the real issue is part of
becoming a software professional.

• Recursion. The issue is not just
recursive routines—a technique—
but the general mode of reasoning
that defines a concept by applying
the definition itself to some of its
parts. It is dizzying at first, but once
you have learned to use recursion
properly, you have gained a power-
ful intellectual tool, applicable
throughout the field.

• Information hiding. Deciding what
you export to the rest of the world
and what you keep to yourself is a

skill that software developers learn
only through a combination of good
examples and practice.

• Reuse. The good software developer
soon realizes that one key to making
your mark is to know when to rely
on someone else’s job. Reusing well
is a skill; producing results for others
to reuse is the sign of the master.

• Battling complexity. Software sys-
tems are ambitious intellectual
undertakings—indeed, some of the
most complex systems ever con-
ceived by humankind—and com-
plexity threatens to engulf us at
every stage. The expert knows how
to recognize the essential simplicity
behind an apparent mess.

• Scaling up. Not only are some of our
products complex, their sheer size
can be staggering. The Windows
2000 source code takes up a
reported 35 million source lines, and
some defense or telecommunication
systems are in the same range. A few
million lines is common. Many soft-
ware engineering issues take on a
new urgency when size grows; the
quantitative affects the qualitative.
Part of a good professional’s skill is
knowing which techniques will scale
up, if only because size is not always
planned: Often, a large system is just
a small system that grew.

• Designing for change. True to its
name, software must change, can
change, and does change more than
engineering artifacts of any other
kind. Unless developers thoroughly
apply strict architectural principles,
the change process can be painful,
especially for large systems. Much
of the justification for modern
methods, languages, and tools is the
expectation that they will facilitate
this process. Even with systems of
the size that a university education
can tackle, we can let our students
discover the challenge, learn the
principles of designing for change,
and directly experience the benefits.

• Classification. Object-oriented pro-
gramming has shown that one way

to attack complexity is to organize
messes into smaller messes, and
repeat the process.

• Typing. The notion that giving
everything a type helps produce cor-
rect software elements, document
them, and make them usable effec-
tively is another realization that can
deeply affect a software profes-
sional’s grasp of the field—an obser-
vation that still applies to people
who prefer untyped approaches for
some of their work. Typing issues
and techniques recur throughout the
field, from specification to imple-
mentation and documentation. Our
profession can boast of having taken
the construction and study of type
systems, object-oriented or not, fur-
ther than any other profession; mas-
tering their power is a required part
of becoming a good software pro-
fessional.

• Contracts. The practice of equip-
ping algorithms, data structures,
modules, and systems with precise
constraints, guarantees, and invari-
ants puts us in far better control of
what we do. Once mastered, this
skill will last a lifetime.

• Exception handling. When pro-
ducing software, most of us would
rather consider only the most desir-
able cases, but a professional must
constantly worry about abnormal
situations too. Only through sys-
tematic conceptual techniques can
we avoid drowning the supposedly
interesting parts of our reasoning—
and of our programs—in myriad
provisions for exceptional cases.

• Errors and debugging. Although
textbooks usually do not emphasize
this point, much of a software
developer’s daily life is spent deal-
ing with things that don’t work as
they should, whether it’s the devel-
oper’s own fault or someone else’s.
Software professionals are the
world’s experts on messing up. We
must teach students that this is a
fact of life and show them how to
deal with it.

The Principles: What Software Professionals Know

Tsichritzis notes,5 a software professional may well
learn about key new developments from the morning
paper. This is a humbling experience that challenges us
even more to define, for ourselves and for our students,
what entitles us to our claims of professionalism.

Practices
At a more mundane level, teaching software engi-

neering also involves making the students familiar with
practical techniques that have proved to be productive
and are a key part of the trade. Examples include the
following:

• Configuration management. Although it is one of
the most important practices that every project
should apply, configuration management is not
used as widely or systematically as it should be.
Configuration management is based on simple
principles and supported by readily available tools.

• Project management. It does not always have to
be such a hard task, but many software engineers
are terrible at project management. Although the
ample literature on software project manage-
ment is not perfect, it contains gems that should
be taught to all software students because most
of them will at some point exert a project man-
agement role.

• Metrics. This is one of the most underused tech-
niques in software development. Much of the
current literature on metrics is not very good
because it lacks a scientifically sound theory of
what is being measured and why it is relevant.
All the same, we should teach students how to
use metrics to quantify applicable project and
product attributes, to evaluate the claims of meth-
ods and tools through objective criteria, and to
use quantitative tools as an aid to prediction and
assessment.

• Ergonomics and user interfaces. Users of soft-
ware systems expect high-quality user interfaces;
like the rest of the system, the user interface must
be engineered properly, a skill that can be learned.

• Documentation. Software engineers do not just
produce software—they should also document
it. A course on technical writing should be part of
any software curriculum. Here engineering meets
the humanities.

• User interaction. The best technology is useless
unless it meets the needs of its intended users. A
good software engineer must know how to listen
to customers and users.

• High-level system analysis. To solve a problem
through software, you must first understand and
describe the problem. This task of analysis is an
integral part of software engineering, and it’s as
difficult as anything else in it.

• Debugging. Errors and imperfec-
tions are an integral part of the soft-
ware engineer’s daily work. We
need systematic and effective debug-
ging techniques to cope with them.

It is not hard to find other examples
of strong, robust techniques that every
professional should know and practice.

Applications
Under the heading “applications,” I

include the traditional specific areas of
software techniques: fundamental algo-
rithms and data structures, compiler
writing, operating systems, databases,
artificial intelligence techniques, and
numerical computing.

The aim here is not to be imperialis-
tic by attaching these disciplines artifi-
cially to software engineering. On the
contrary, it is to insist that whatever their individual
traditions, techniques, and results may be, these are
software subjects, and we should teach them in a way
that is compatible with the particular view of software
engineering the institution chooses. The advantage is
mutual: The specialized subjects benefit from more
methodologically aware students—for example, pro-
gramming projects can focus on the subject at hand,
rather than being distorted by pure programming
issues because the students have already learned gen-
eral design and programming skills—and they help
meet software engineering goals by providing a wealth
of new examples and applications.

Tools
The fashionable tools of the moment should not

determine pedagogy. Indeed, Parnas has some rather
strong words to say against teaching specific languages
and tools. But if these aspects should not be at the cen-
ter, we also should not ignore or neglect them. We
must expose students to some of the state-of-the-art
tools that industry uses. This exposure should pro-
ceed with a critical spirit, encouraging students to see
the benefits and limitations of these tools—and to
think of better solutions.

A tools curriculum cannot and should not be
exhaustive; it is better to select a handful of pro-
gramming languages and a few popular products and
help the students understand them in depth. If they
need other tools, they will learn them on the job. But
they must have seen a few during their studies to have
a general idea of what’s available and what their future
employers expect.

Inevitably, some skills become obsolete by the time
a student graduates, but that is not such a bad risk

May 2001 31

Teaching software
engineering also involves

making the students familiar
with practical techniques

that have proved to be
productive and are a key

part of the trade.

32 Computer

as long as the study of tools is a com-
ponent of the curriculum, not its prin-
cipal goal, and it is understood as the
study of a few examples in light of
more general principles. When the time
comes to learn a more modern tool,
having mastered some of its predeces-
sors and understood their limitations
is often helpful.

These observations apply in particu-
lar to programming languages. A strong
software program will often choose its
solutions in this area, a decision bril-
liantly pioneered when many depart-
ments chose Pascal in the 1970s. If the
retained approach is not one of the
dominant industry languages, the cur-
riculum should also include a few ser-
vice courses (or course sections) on these
industry standards, both to let students
have the right buzzwords on their
résumés and to expose them to the vari-

ety of practical approaches popular in industry. A good
software engineer is multilingual anyway, so there is
no contradiction between using your approach of
choice for teaching and letting your students discover
as many others as time permits.

A sound educational program must resist the
increasing attempts by interested parties—students’
families are often among the most vociferous—to
impose specific tools, in particular programming lan-
guages, on the basis of an assessment of what is hot in
the employment ads of the moment. With the increas-
ingly user-driven discourse of many universities, such
pressures can be dangerously effective.

This is a recent trend. Had it been present 25 years
ago, universities would never have moved to Pascal, as
there were certainly no ads for Pascal programmers
back then; industry, for the most part, had not even
heard about Pascal. This phenomenon is of growing
concern to many professors, who know that today’s
“in” skill may be tomorrow’s dead end. While in a
democracy we must take everyone’s concerns into
account, educators are responsible for choosing the
appropriate tools on the basis of their best professional
assessment of students’ interests, not just in the short
term but over the course of a career.

Mathematics
One example David Parnas gives of topics that he

sees as belonging in a computer science curriculum—
but not in a software engineering program—is deno-
tational semantics. My view on this comes from my
experience as a designer and software project manager
in industry. Like Parnas, I am not that interested in stu-
dents knowing arcane details of language theory at the

PhD level, but I have come to treasure programmers’
ability to reason formally. Although no ordinary soft-
ware project applies formal semantics on a daily basis,
some understanding that programming and program-
ming languages are mathematical beasts susceptible to
formal description is a key advantage, and I have found
it to be particularly useful in software teams.

The level of such knowledge does not have to be very
high. In Introduction to the Theory of Programming
Languages,6 I tried to summarize, in practical terms
understandable by an ordinary programmer, the kind
of formal semantic background that I would like a
team member to have. Over and again in my develop-
ment work, I have found that students who have mas-
tered the ability to apply mathematical reasoning to
software development have a distinct advantage over
those who do not. In my opinion and experience, being
a fully realized professional developer requires having
mastered such topics as Hoare semantics and the basic
techniques—such as present in Z or B—for modeling
software issues in mathematical terms.

These skills are part of a strong university curricu-
lum, and it’s very hard to teach them through industrial
courses after students have been immersed in produc-
tion for too long. Referring again to Parnas’s strong
advocacy of the engineering side of software engineer-
ing, from my practical perspective as a producer of large
systems for industrial customers, such abilities are more
important for a team member than knowledge of mate-
rials engineering. One of the distinctive properties of
traditional engineering disciplines is, after all, that they
have a strong mathematical basis. Hoare semantics and
the like are software engineering’s closest counterpart
to Maxwell’s equations or the laws of mechanics.

The mathematics a software curriculum teaches
should include the usual aspects—some calculus and
discrete mathematics à la Knuth—but it also should
provide a strong grounding in logic, an introduction
to formal semantics in very practical terms, and some
practice with a modern formal language and proof
framework such as Z or B. Certainly, some students
will at first resent being subjected to such material, but
we can hope that many will become grateful, as they
mature in their careers, that they were exposed to it
early enough.

TEACHING BY DOING
Besides formal courses, any curriculum will include

software projects. Often, they are insufficient prepa-
ration for the true challenges of professional software
development, which involve large systems (rather than
the relatively small endeavors of academic projects),
large groups (seldom the case in a university setting),
modifying someone else’s legacy system (rather than
building a solution from scratch), and dealing with
end users (rather than a professor and a grader).

A sound educational
program must resist the
increasing attempts to

impose specific tools on the
basis of what’s hot at the

moment.

It is impossible, and may not be desirable, for a uni-
versity setting to mimic these circumstances com-
pletely. After all, a university is not a company, and it
shouldn’t be. But we must prepare our students for
the real challenges they will face. The standard acad-
emic project is not enough for this goal. An essential
technique is the long-term project, which students
should develop over more than a standard quarter or
semester—typically over the course of a year. It should
be a group project that includes aspects of analysis,
design, and implementation. And it should involve the
reuse, understanding, modification, and extension of
existing software. The best way to achieve this last
goal is to imagine the project running over several
years, with each new class taking over the result of the
preceding one and developing it further.

Such an endeavor may at first appear unrealistic,
but a group of enthusiastic teachers at Monash
University, under the direction of Christine Mingins,
has been doing exactly that over the past few years.
The result is an impressive graphical simulation pro-
gram that every incoming class enhances, learning in
the process the challenges and techniques of updating
someone else’s code.7

Obstacles exist, such as proper grading of such a
project and the difficulty of organizing yearlong pro-
jects in a standard academic calendar. But with resolve
and enthusiasm, we can address them. The result, I
think, makes it worth trying.

THE INVERTED CURRICULUM
An idea that complements the multiyear project is to

capitalize on one of the great promises of modern soft-
ware technology: reuse. The principle of the inverted
curriculum (a term borrowed from debates on electri-
cal engineering education8), or “progressive opening of
the black boxes” (a somewhat longer name but more
precise9), is that the students first use powerful tools
and components as clients for their own applications,
and then progressively lift the hood to see how things
are made, make a few modifications, and add their own
extensions. The progression is from the consumer side
to the producer side, but focuses from the start on pow-
erful and possibly large examples.

There are several benefits. Right from the begin-
ning, the students get to deal with impressive pro-
grams, like those that handle graphics. The teaching
capitalizes on this “wow effect” and the ability to
work with immediately visible results. Today’s stu-
dents have used electronic games and PCs from an
early age, and they will not be too impressed by the
typical introductory programming examples (the eight
queens and such). Trying to get them excited is peda-
gogy, not demagogy.

Furthermore, the students learn hands on the neces-
sity and benefits of abstraction and information hiding.

We can try to teach these concepts
abstractly through what will often
sound to the students like homilies, but
the laws of that genre inherently limit
the effect. To realize that such discourse
is not just an adult’s injunction to be
good but describes skills essential to sur-
vival in a large project, nothing beats
having tried to use or modify a compo-
nent and finding that it lacks proper
specification separate from its imple-
mentation, proper contracts, and proper
description of what should happen in
exceptional cases.

I have discussed this strategy further
in articles and a book chapter. I think it
can be turned into a central feature of
the curriculum. As far as I know, it
has not been tried on a large scale yet,
so it entails some risk and requires very
careful planning, organization, and exe-
cution; but it is not out of reach for an
ambitious and innovative institution.
And it can dramatically alter the qual-
ity of the student experience.

NONSOFTWARE STUDENTS
Besides teaching their own students, computing sci-

ence departments are often asked to provide software
courses for students majoring in other disciplines,
especially branches of engineering. They may feel a
tension between two trends: developing mini-CS cur-
ricula emphasizing the principles of the discipline
itself, or treating such contributions as “service
courses” that fulfill the exact needs of the customer,
often focused on specific skills, languages, and tools.

This is a delicate issue, and it is easy to cite argu-
ments for both sides. In support of the first, it is nat-
ural that computer scientists would want to focus on
the contributions of their own discipline and try to
convey some of its “dozen or two” foundational con-
cepts. They may resent attempts by colleagues from
other fields to interfere or be offended by an empha-
sis on purely utilitarian skills that downplays the intel-
lectual contributions of their own field.

When programming education was introduced a
few years ago into the curriculum of preparatory
classes for the Grandes Écoles (France’s elite engi-
neering school system), official instructions directed
teachers to use Pascal but stop at the introduction of
recursion. What made this injunction particularly
interesting is that the rest of the curriculum is heavily
mathematical, involving quite abstract required sub-
jects such as topology. Yet the powers in charge
decided that recursion did not fit, as if recoiling at the
potential effect on society of letting a few 17-year-olds

May 2001 33

Today’s students will not be
too impressed with typical
introductory programming

examples.

34 Computer

catch a glimpse of the infinite. They
seemed to be sending a clear message:
“You computer people don’t have a dis-
cipline—you just know a few tricks
that we want you to teach our students
as they prepare to engage in serious
intellectual endeavors.” It is under-
standable that not all computer scien-
tists would agree.

It would be unfair, however, to deny
our client disciplines—the professions
who will hire our students—their right
to expect practical skills.

The solution is probably in-between:
fulfill customer needs while controlling
the pedagogy, and teach concepts as well
as skills. As the discipline matures and
loses its inferiority complex, it may find
the task easier. Mathematicians too pro-
vide courses to other departments, but
they seem to be able to teach mathe-
matics the way they want while catering
to their market.

A DEVELOPMENT PLAN
When considering the evolution of

the field over the past decades, we can-
not escape the possibly unpleasant observation that if
much of the innovation in the 1960s and 1970s came
from academic institutions, contributions from small
entrepreneurial companies and the research labs of
large corporations dominated the 1980s and 1990s.
This is an overgeneralization, admitting exceptions,
and may offend some readers. It would be hard, how-
ever, to point to many recent incontrovertible equiv-
alents of such widely successful academic achieve-
ments as Wirth’s Pascal, Dijkstra’s THE operating sys-
tem, Hoare’s monitors and communicating sequential
processes, the University of Oslo’s Simula, and other
milestones of the early years that showed universities
could deliver not just good theory but also influential
systems.

Part of the reason for this change is that the prod-
ucts of industry have raised the stakes. Wirth’s compil-
ers made the Swiss Federal Institute of Technology in
Zurich a household name in the software world, but it
is hard to imagine a compiler, however innovative,
achieving a similar result today. A university group
would have a tough time competing with the hundreds
of developers behind Microsoft’s Visual C++ or even
those behind the GNU GCC compiler—not a com-
mercial effort but also not an academic one in any accu-
rate sense of the term.

People, students included, expect a compiler to come
with a sophisticated development environment with all
the trappings—a visual debugger, browser, graphical

user interface designer, and configuration management
facilities. For all the criticism that academic circles give
Visual C++ and similar tools, which they may deserve
in part, they provide a wealth of resources and facilities
(some, it must be said, very cleverly devised), setting a
high standard for anyone who wants to compete. If
such competition is hard to sustain nowadays in for-
mer areas of academic excellence, academics must find
new markets in which they can make their mark.

I make no pretense of knowing what all these new
fields will be, but one that I find promising is the con-
vergence of component-based development and qual-
ity. The industry claims that it is widely embracing the
notion of reusable components. But there is no guar-
antee of quality for these components, no standard,
no rules, and no qualifying agency. The risks are as
huge as the opportunities. A major endeavor can fail
in a catastrophic way because of a small deficiency in
one of its more humble components. This kind of sit-
uation led to the failure of the initial launch of the
Ariane 5 rocket—due to the poorly executed reuse of
a minor software component—and delayed the entire
industrial enterprise by a year and a half, costing
European taxpayers an estimated $10 billion.10

Quality, however, is—or should be—academia’s
specialty. Huge opportunities can spring from this con-
vergence. A long-term project, the source of PhDs,
papers, industry collaborations, and a robust reputa-
tion, might involve

• defining standards for components;
• developing model high-quality components for

everyone to appreciate, criticize, and emulate;
• setting up qualification metrics, possibly a com-

ponent maturity model;
• setting up qualification suites;
• developing new methods and tools for better

components, including proof technology, testing
techniques, documentation techniques, and val-
idation techniques; and

• setting up an organization to qualify and label
components that third parties submit.

This kind of endeavor—although, of course, not
exclusive of others in software engineering—can ener-
gize an ambitious computer science department and
help it achieve an unchallenged level of international
reputation, especially if complemented by an educa-
tional curriculum focused on software excellence.

F or all the talk about “software engineering” in
the literature, this article included, we must
accept that the term remains in part a slogan, as

it was when first introduced almost 35 years ago.
Since then, however, we have learned enough to teach
our students a coherent set of principles and tech-

The industry claims wide
use of reusable

components, but has no
quality guarantee,

no standards, and no
qualifying agency.

Learn Something New
Built-In Self-Test for SOCs

An online tutorial from the IEEE Computer Society

http://computer.org/DT-tutorials/BIST

The first step in the D&T Community Project

niques, without hiding from them—or ourselves—
the many remaining uncertainties.

I have tried to maintain a balance here between the
conceptual and the operational—the principles and
techniques—as I think a software curriculum should
do. I have tried to show that we do not need to sacri-
fice either of these aspects for the other, and to describe
a challenge worth tackling: to set up a program of
teaching and research that is at the same time serious,
ambitious, attractive to the students, technically up to
date, firmly rooted in the field’s practice, and scientif-
ically exciting. ✸

Acknowledgments
I thank C.A.R. Hoare and David L. Parnas for impor-

tant comments on an earlier version of this article.

References
1. D.L. Parnas, “Software Engineering Programmes Are

Not Computer Science Programmes,” CRL Report 361,
Communication Research Laboratory, McMaster Univ.,
Apr. 1998; to be published in Annals of Software Eng.,
2001.

2. Information Technology of America, “Major New Study
Finds Enormous Demand for IT Workers: Research Pin-
points Hot Jobs and Skills Needed, Offers Insights on

Employer Preferred Training Approaches,” http://www.
itaa.org/news/pr/PressRelease.cfm?ReleaseID=955379119.

3. B.W. Boehm, Software Engineering Economics, Pren-
tice Hall, Upper Saddle River, N.J., 1981.

4. P.G. Neumann, “Illustrative Risks to the Public in the
Use of Computer Systems and Related Technology,”
http://www.csl.sri.com/users/neumann/illustrative.html.

5. D. Tsichritzis, “The Changing Art of Computer Science
Research,” in Electronic Commerce Objects, D.
Tsichritzis, ed., Centre Universitaire d’Informatique,
Université de Genève, 1998.

6. B. Meyer, Introduction to the Theory of Programming
Languages, Prentice Hall, Upper Saddle River, N.J., 1990.

7. C. Mingins et al., “How We Teach Software Engineer-
ing,” J. Object-Oriented Programming, Feb. 1999, pp.
64-75.

8. B. Cohen, “The Education of the Information Systems
Engineer,” Electronics & Power, Mar. 1987, pp. 203-205.

9. B. Meyer, Object-Oriented Software Construction, 2nd
ed., Prentice Hall, Upper Saddle River, N.J., 1997.

10. J. Jézéquel and B. Meyer, “Design by Contract: The
Lessons of Ariane,” Computer, Jan. 1997, pp. 129-130.

Bertrand Meyer is chief technology officer of Inter-
active Software Engineering, Santa Barbara, Calif.,
and an adjunct professor at Monash University, Mel-
bourne. His books include Object-Oriented Software
Construction (Prentice Hall, Upper Saddle River, N.J.,
1997). Contact him at Bertrand_Meyer@eiffel.com.

May 2001 35

