
32 December 1998/Vol. 41, No. 12 COMMUNICATIONS OF THE ACM

Requirem
TRacing
I

n this ever-changing business and tech-
nology environment, the risk of inconsis-
tencies in systems development and
evolution multiplies. Experience reuse
becomes a necessity in order to control
quality, costs, and time, even when per-
sonnel changes. Requirements tracing is
emerging as an effective bridge that
aligns system evolution with changing

stakeholder needs. It also helps uncover unexpected
problems and innovative opportunities, and lays the
groundwork for corporate knowledge management.

However, few organizations fully recognize—or
even understand—the true potential of the new
methods and tools in requirements tracing. A net-
work of projects worldwide has investigated the
issues, studied advanced industry solutions, and
developed research prototypes in order to provide a
more coherent view of where we are moving.

Far removed from its time-honored definition as a
fuzzy early phase of systems development, require-
ments engineering is now recognized as the key tool
to establish a vision of system-related change in its
technical, cognitive, and social context [5]. In other
words, it is the task of requirements engineering to
proceed along three dimensions: managing the con-
vergence of stakeholder interests toward agreement
on key system goals and constraints; achieving a suf-
ficient shared understanding of the issues involved in
realizing the system vision, such as its functionality,
nonfunctional properties, intended and unintended

side effects; and documenting this understanding in
adequate representation formats, for human informa-
tion sharing as well as for computerized system
development [6].

The intended result of this process is a structured
but evolving set of agreed, well understood, and care-
fully documented requirements. Requirements
traceability, then, is defined as the ability to describe
and follow the life of a requirement, in both a for-
ward and backward direction, ideally through the
whole systems life cycle [3]. Four kinds of traceabil-
ity links are typically distinguished with respect to
their process relationships to requirements [1]:

• Forward from requirements. Responsibility for
requirements achievement must be assigned to
system components, such that accountability is
established and the impact of requirements
change can be evaluated.

• Backward to requirements. Compliance of the sys-
tem with requirements must be verified, and
gold-plating (designs for which no requirements
exist) must be avoided.

• Forward to requirements. Changes in stakeholder
needs, as well as in technical assumptions, may
require a radical reassessment of requirements rel-
evance.

• Backward from requirements. The contribution
structures underlying requirements are crucial in
validating requirements, especially in highly
political settings.

Matthias Jarke, Guest Editor

COMMUNICATIONS OF THE ACM December 1998/Vol. 41, No. 12 33

ents

The first two trace types are often subsumed under
the label of post-traceability. They link require-
ments to design and implementation, document-
ing responsibility assignment, compliance
verification, or impact analysis of a requirement.

The latter two link types enable pretraceability.
They document the rationale and sociopolitical
context from which the requirements emerge. It is
fair to say that post-traceability is much better
understood than pretraceability, even though only
pretraceability will really provide the often

demanded linkage between the business and IT.
While research and practice have converged on

these definitions, the level of traceability usage in
organizations varies widely. Based on the most com-
prehensive survey of traceability practice to date,
Balasubramaniam Ramesh’s article identifies two
clusters of traceability user organizations—low-end
vs. high-end—and identifies factors influencing
their practice. These distinctions may help you to
position your own organization, and to identify how
to progress toward more mature traceability.

Low-end users see traceability mostly as a costly
defense against criticism and liability lawsuits.
Companies with life-critical business, such as aero-
space industries, pharmaceutical and medical engi-
neering companies, have long been forced to
document each and every activity at a very detailed
level. News agencies work on making their news sto-
ries more traceable to prove due diligence in the
news they publish; the challenge is to trace changes
forward to newspapers where they are published (for
example, a story proving to be wrong). Internet pub-
lishing defines new standards in this domain that
will surely have a legal impact as well.

In systems engineering, defensive traceability has
been broadly enforced via national and international
standards starting with DoD 2167a (now MIL-STD-
498) in the 1980s. Such standards focus mostly on
compliance verification, such as post-traceability for-
ward from and backward to requirements.

Traceability as a Corporate Strategy
There is an important relationship of traceability to
the Software Engineering Institute’s concept of Capa-
bility Maturity Model [4]. Repeatability of software

34 December 1998/Vol. 41, No. 12 COMMUNICATIONS OF THE ACM

processes, the second level of capability maturity,
presupposes understandable traces. Higher maturity
levels, such as the so-called “managed software
process,” also demand the capability to compare
traces to plans resulting from defined processes.

High-end users see traceability as an investment
in corporate knowledge asset management within
and beyond information systems engineering. The
value of traces in systems maintenance is high-
lighted by multimillion-dollar lawsuits between
software providers and their customers. A new chal-
lenge is the blossoming world of component-ori-
ented systems engineering. As component-based
business solutions are installed at customer sites for
mission-critical applications, traceability backward
to requirements must extend beyond organizational

boundaries all the way into the backyard of the
component factory, and this over decades! Further-
more, component manufacturers always want to
offer best practice components and solutions, and
will thus take strong strategic advantage from
traceability relationships with their most advanced
customers.

Leaders in mechanical engineering, especially in
the highly competitive globalized car industry, take
ambition and scalability of traceability efforts a
step further. As Thomas Rose reports, comprehen-
sive experience assessment is crucial for avoiding

costly mistakes in the radical redesign of engineer-
ing processes toward time compression, organiza-
tional virtualization, and product innovation, for
example, when replacing physical car prototypes by
computer simulations. Companies are installing
process capture and assessment programs across
thousands of engineers, in order to accomplish
backward traceability to key issues of safety and
customer satisfaction. As cars seem to become com-
plex software configurations barely hidden under a
gleaming user interface of glass and metal, forward
traceability across organizational boundaries into
the service garages, or even into the car on the
street, becomes another crucial competitive issue.

Traces as a Product

O
nce it is established what
degree of traceability is
desirable, it makes sense to
define traces as products
that satisfy the desired
traceability properties.
Tracing then is a subprocess
of evolutionary system

development that supplies and exploits these traces.
Seen as a product, a trace must document all

three dimensions of requirements engineering
processes mentioned. In the representational
dimension, it must capture linkages between the
documents produced during a requirements
process. Indeed, many early traceability tools either
link design documents using a hypertext system, or
simply record the links in a spreadsheet indepen-
dent of the documents themselves.

From a cognitive perspective, a trace captures the
conceptual objects, and links them in a meaningful
way. For example, a requirement may be linked to
the design components responsible for satisfying it
by a link, which is annotated by a compliance veri-
fication procedure. This kind of traceability dates
back to work on dependency-directed reasoning in
AI-based design environments in the late 1970s
[8], as well in formal approaches to software devel-
opment in the early 1980s, such as the Knowledge-
Based Software Engineering project of the U.S. Air
Force.

Finally, a trace should also capture the human
cooperation in the design process, that is, how
stakeholders contribute to the development and
satisfaction of requirements [3]. Many researchers
stress the capture of design rationale, that is, deci-
sions made, alternatives considered, underlying
assumptions, and stakeholder goals. In yet another
kind of process description, objects to be captured

Stakeholder

satisfies
depends-on

rationale

evolves-to
Process Objects

Source

contribution
structure

Product Object

Figure 1. Traceability meta model capturing three dimen-
sions of requirements management

in a trace involve process management information,
such as tasks performed, plans followed, and
resources consumed.

Many specific link types have been discussed in
literature. In order to gain a comprehensive pic-
ture, it appears useful to classify all these link types
in terms of a common meta model that covers the
three dimensions of requirements engineering.

Such a meta model, derived from several com-
prehensive literature analyses [3, 6] as well as an
analysis of traceability schemes used in practice [7],
is shown in Figure 1. In this meta model, stake-
holders are linked via contribution structures to the
conceptual objects they influence, and to the docu-
ments in which these objects are recorded.

Concerning the objects, we distinguish those
describing products of the design process from
those capturing the process itself. Product objects
can have the role of requirements or goals, or they
can result from trying to satisfy these goals. Each
goal object induces constraints that create depen-
dencies between the objects satisfying it; a well-
known example is a configuration of software
components satisfying some user requirement. The
evolution of products, satisfaction and dependency
links is described by process objects. They evolve
through user actions and design decisions whose
rationale is captured in further, auxiliary product
objects. An example would be the versioning of a
configuration justified by changing technologies
and user needs. It is important to note that a trace
must contain both product and process objects.
This is because the process objects reflect the
methodology used, and thus are the starting point
for process improvement.

Tracing as a Process
The process of requirements tracing can best be
defined in the context of systems development as a
whole. Research in workflow management, includ-
ing software process management, typically distin-
guishes three domains in which such a process
operates: The performance domain in which devel-
opers cooperate with stakeholders to do the job; the
management domain in which process owners or
managers enact process/workflow models to control
the work of the performance domain; and the mod-
eling domain in which process engineers define and
refine suitable work processes, based on general
principles as well as on feedback from both the
management and the performance domain [2].

Tracing is the key feedback mechanism between
these three domains. Traces provide immediate per-
formance feedback to management, but also longer-

term information to the modeling domain where
performance traces are analyzed and compared with
the plans used by the management domain. Com-
bined with a sufficiently rich semantic structure of
the process models themselves, this can establish a
computer-supported self-optimizing development
process in the organization [4]. However, present
development environments support the necessary
flexibility in trace capture and usage only in a rudi-
mentary manner, due to various obstacles.

Establishing and maintaining requirements
traceability is an expensive and politically sensitive
endeavor. Developers are not exactly known for
their love of documentation. Traceability should
come as a side effect of their daily productive work
rather than imposing additional bureaucracy.

Developers may also fear that traces are used
against them, for example, for work evaluation or
for making specialists superfluous by capturing
their best practice in systems. The degree and qual-
ity of trace capture, as well as protecting the own-
ership to traces, are therefore not just technical and

COMMUNICATIONS OF THE ACM December 1998/Vol. 41, No. 12 35

Establishing

and maintaining

requirements

traceability is

an expensive

and politically

sensitive endeavor.

Developers are

not exactly

known for

their love of

documentation.

business issues but also political ones. They need to
be addressed by a clever combination of policy
decisions, incentive schemes, and technical sup-
port.

Current traceability tools have made significant
inroads into systems engineering practice. However,
there are still major gaps. Adaptability to project-
specific needs is critical for traceability support envi-
ronments. Ralf Dömges and Klaus Pohl identify
three key requirements that current tools only satisfy
to a limited degree: integration into the process to
reduce capture effort, adaptation to the situation,
and support for organizational knowledge creation.
They also present an architecture and a prototype
system that satisfies these requirements in a seamless
approach.

A Challenge for the Future
The recent emphasis on enhanced traceability is part
of a larger vision of cooperative information systems
emerging from trends in industrial practice as well
as academic research. The article by DeMichelis et
al. summarizes results from a European-American-
Australian-Canadian joint effort that tried to formu-

late this vision and promote new conference series
and government initiatives, including a proposed
major U.S. initiative on cooperative computing.

Generalizing the software process architecture dis-
cussed here, cooperative information systems are
defined as continuously aligning three very different,
but interdependent facets: human work practice of
the users, organizational concepts and models, and
open information systems technologies. This contin-
ued alignment is crucial for the agility of an organi-
zation—its capability to manage change. Recent
advances in conceptual modeling, component-based
information technologies, and Internet-enabled group
work are making such continued alignment possible.
However, current industry solutions tend to over-
emphasize one of these facets over the others, and
researchers are even more locked in traditional com-
munity boundaries. The article poses a challenge to
research and practice alike: to consider a broad frame-
work of thinking that enables communities such as
databases, distributed systems, CSCW, and organiza-
tional IS research to take advantage of each others’
results and methods.

Traceability—as the means to establish the links
between people-system reality and the models under
which they are managed—takes center stage in this
framework, and the case studies reported this special
section provide ample evidence of its potential.

References
1. Davis, A.M. The analysis and specification of systems and software

requirements. In Systems and Software Requirements Engineering. IEEE Com-
puter Society Press, 1990, 119–144.

2. Dowson, M. Software process modeling themes and issues. In Proceedings
of the 2nd Int’l. Conference Software Process (Berlin, Germany, 1993). IEEE
Computer Society Press, 54–62.

3. Gotel, O., Finkelstein, A.W. An analysis of the requirements traceabil-
ity problem. In Proceedings of the Int’l. Conference Requirements Engineering
(Colorado Springs, Co, 1994), IEEE Computer Society Press, pp.
94–102.

4. Humphrey, W. Managing the Software Process. Addison-Wesley, Reading,
Mass., 1990.

5. Jarke, M., Pohl, K. Requirements engineering in 2001: (Virtually) man-
aging a changing reality. IEE Softw. Eng. J. 9, 6 (1994), 254–263.

6. Pohl, K. Process Centred Requirements Engineering. Advanced Software
Development Series, Wiley & Sons Ltd., Taunton, England, 1996.

7. Ramesh, B., Jarke, M. Towards reference models for requirements trace-
ability. Technical Report, Georgia State University, submitted for pub-
lication.

8. Stallman, R., and Sussman, G. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit design.
Artif. Intell. 9, 2 (1977), 135–196.

Matthias Jarke (jarke@informatik.rwth-aachen.de) is
Professor of Information Systems and Chair of the Computer
Science Department at RWTH Aachen, Germany.

© 1998 ACM 0002-0782/98/1200 $5.00

c

36 December 1998/Vol. 41, No. 12 COMMUNICATIONS OF THE ACM

