
February 2007 107

S O F T W A R E T E C H N O L O G I E S

Combatting vastly different

types of software bugs

requires different strategies.

D uring the Gulf War, 28 US
Army reservists were killed
and 97 were injured on 25
February 1991 when the
Patriot missile-defense sys-

tem at their barracks in Dhahran,
Saudi Arabia, failed to intercept an
incoming Scud missile.

This well-known incident occurred
due to a software fault, or bug, in the
system’s weapons-control computer.
This event led to a system failure—
that is, a deviation of the actual sys-
tem behavior from correct service. It
was also a case in which engineers
employed multiple techniques to fight
the software bug.

BOHRBUGS: REMOVE
Finding and removing software

faults is the classic strategy for deal-
ing with them. Fixing bugs in the oper-
ational phase is considerably more
expensive than doing so in the devel-
opment or testing phase. Published lit-
erature reports cost-escalation factors
ranging from 5:1 to 100:1 (B.W.

Boehm and V.R. Basili, “Software
Defect Reduction Top 10 List,”
Computer, Jan. 2001, pp. 135-137).

Therefore, engineers expend much
effort on detecting and removing bugs
during software development via both
dynamic software tests and static tech-
niques like code reviews and walk-
throughs. Systematically conducted
unit and system tests play an impor-
tant role in revealing faults that lead
to failures during software execution.

However, diagnosing and isolating
the underlying fault responsible for an
observed failure becomes difficult if
the failure can’t be reproduced.
Software testing is, therefore, mainly
suitable for dealing with faults that
consistently manifest under well-
defined conditions. Testers sometimes
refer to such faults as Bohrbugs, an
allusion to Niels Bohr’s simple and
intelligible atomic model (J. Gray,
“Why Do Computers Stop and What
Can Be Done About It?” Proc. 5th
Symp. Reliability in Distributed
Systems, 1986, pp. 3-12).

MANDELBUGS:
RETRY, REPLICATE

However, testers do encounter fail-
ures they can’t reproduce. Under seem-
ingly exact conditions, the actions that
a test case specifies can sometimes, but
not always, lead to a failure.

Fault activation
To explain this phenomenon, it’s

useful to take a closer look at how the
static fault in the software is connected
to the dynamic failure occurrence.

Usually, activating a fault by exe-
cuting the part of the software where
it’s located doesn’t immediately cause
a failure. Rather, it produces an inter-
nal condition in the system that devi-
ates from the correct internal
condition—referred to as an error—
even though the user might not per-
ceive this discrepancy. An error can
develop into further errors before a
failure finally occurs. This functional
chain between errors and failure is
called error propagation.

For example, a fault in an algo-
rithm’s implementation can lead to an
erroneous computation for specific
values of a program variable—a case
of fault activation causing an error.
The software can use this incorrect
result internally for further calcula-
tions, in which case the error propa-
gation leads to additional errors. A
failure occurs only when the system
uses one of these incorrect calculations
in a way that influences a perceivable
system behavior, or when error prop-
agation causes a failure occurrence.

Based on the relationships between
faults, errors, and failures, we can
offer two explanations as to why soft-
ware may behave differently under
apparently identical conditions. First,
if there’s a long delay between the
fault activation and the final failure
occurrence—for example, traversing
several different error states in the
error propagation—then it’s difficult
to identify the user actions that actu-
ally activated the fault and caused the
failure. Simply repeating the steps car-
ried out a short time before the fail-
ure occurrence might not lead to its
reproduction.

Fighting Bugs:
Remove, Retry,
Replicate,
and Rejuvenate
Michael Grottke and Kishor S. Trivedi
Duke University

r2soft.qxp 23/1/07 12:51 PM Page 107

108 Computer

S O F T W A R E T E C H N O L O G I E S

Second, other elements of the soft-
ware system—such as the operating
system, other applications, or the
hardware—can influence a fault’s
behavior in a specific application. We
refer to the set of these elements as the
application’s system-internal environ-
ment. For example, inadequate syn-
chronization in multithreaded soft-
ware can give rise to race conditions,
in which the program behavior
depends on the relative timing of the
threads the operating system sched-
ules. Since a failure only occurs if the
operating system schedules the threads
in a specific order that the program-
mers didn’t foresee, troubleshooters
find it difficult to reproduce such fail-
ures and isolate the underlying faults.

A fault can cause the software to
exhibit a chaotic and even nondeter-
ministic behavior with respect to the
occurrence and nonoccurrence of fail-
ures if its activation or error propaga-
tion are complex in at least one of
these two ways. Software engineers
sometimes refer to faults with this
property as Mandelbugs, an allusion
to Benoît Mandelbrot, a leading re-
searcher in fractal geometry (E.S.
Raymond, The New Hacker’s Dic-
tionary, MIT Press, 1991).

Sometimes, the literature also calls
these software faults Heisenbugs.
However, Bruce Lindsay, who invented
the term, derived it from Heisenberg’s
Uncertainty Principle, referring to
faults that change their behavior when
probed or isolated (M. Winslett,
“Bruce Lindsay Speaks Out,” ACM
SIGMOD Record, June 2005, pp. 71-
79). Since the system-internal environ-
ment induces the change in behavior,
Lindsay’s Heisenbugs are actually a
type of Mandelbug.

Unique problems
and possibilities

A problem with Mandelbugs is the
high probability that a developer
won’t detect them during testing. Even
if a programmer or tester were to exe-
cute the parts of the code containing
Mandelbugs, they will only cause fail-
ures if they meet the complicated con-
ditions related to the system-internal

environment. Mandelbugs can there-
fore go unnoticed until long after the
software’s release.

Moreover, even if a Mandelbug
should cause test cases to fail, repro-
ducing the failures is difficult, as is iso-
lating the underlying Mandelbug. As a
consequence, removing the Mandelbug
before the software’s release might not
be possible. Therefore, it’s plausible to
assume that the majority of the faults
remaining in a well-tested piece of soft-
ware are Mandelbugs. However, the
published data is inconclusive, indicat-

ing that Mandelbugs account for
between 15 and 80 percent of all soft-
ware faults detected after release (S.
Chandra and P.M. Chen, “Whither
Generic Recovery from Application
Faults? A Fault Study using Open-
Source Software,” Proc. Int’l Conf.
Dependable Systems and Networks,
IEEE CS Press, 2000, pp. 97-106; I. Lee
and R.K. Iyer, “Software Dependability
in the Tandem GUARDIAN System,”
IEEE Trans. Software Engineering,
May 1995, pp. 455-467).

On the other hand, Mandelbugs’
seemingly nondeterministic behavior
makes it possible to deal with them in
ways infeasible for dealing with
Bohrbugs.

First, when a Mandelbug has caused
a failure, a simple retry of the failed
action can result in success. This ex-
plains the phenomenon that restarting
an application or rebooting the system
after a crash often solves the problem.
We can improve the approach by com-
bining it with checkpointing, a tech-
nique that involves regularly saving a
snapshot of the application state in sta-
ble storage. After a failure, we can
restart the application to the latest
available snapshot.

Second, adopting replication, that
is, using redundant resources—an ap-
proach from the hardware reliability
field—is possible. Since natural phe-
nomena like physical deterioration
cause most hardware faults, failover
to an identical component upon fail-
ure of the first usually won’t lead to a
second failure. However, software
faults are human-made design errors
that lurk in the software code.

Different installations of the same
operating system running the same
applications should contain the same
faults. Scholars, therefore, have ques-
tioned whether software replication
can offer benefits similar to those for
replicating hardware. After all, when
executing the commands on a second
installation of an identical piece of
software, a user would encounter the
same fault that led to failure the first
time, causing another failure.

Of course, this reasoning implicitly
assumes that all faults are Bohrbugs.
However, since many software faults
are in fact Mandelbugs not manifest-
ing consistently under well-defined
conditions, software replication has
indeed proven useful. It plays a key
role, for example, in the Object
Management Group’s fault-tolerant
CORBA standard.

AGING-RELATED BUGS:
REJUVENATE

In recent years, researchers have
studied yet another approach to
handling software faults. Anecdotal
evidence suggests that restarting a pro-
gram or rebooting a computer before
the user experiences a failure can be
beneficial for avoiding future failure
occurrences.

Such proactive measures only make
sense if the failure-occurrence rate
increases with the runtime; if the rate
were constant, then restarting or
rebooting wouldn’t affect the risk of
experiencing a failure. In fact, software
systems running continuously for a
long time tend to show a degraded per-
formance and an increased failure-
occurrence rate, a phenomenon called
software aging. Consequently, the pre-
ventive counter techniques are referred

cc
Cc

Ccc
ccc
Ccc

r2soft.qxp 23/1/07 12:51 PM Page 108

to as software rejuvenation (Y. Huang
et al., “Software Rejuvenation: Analy-
sis, Module and Applications,” Proc.
25th Int’l Symp. Fault-Tolerant
Computing, IEEE CS Press, 1995, pp.
381-390).

Intuitively, the software-aging phe-
nomenon appears impossible as we
are executing software without intro-
ducing any changes into its code. Why
would the failure-occurrence rate
change over time if we don’t modify
the software code? There are two pos-
sible solutions to this puzzle.

First, the aging-related bugs can
cause errors to accumulate over time.
These error conditions can accrue
either within the running application,
such as round-off errors in program
variables, or in the system-internal
environment, such as unreleased phys-
ical memory due to memory leaks in
the application. In either case, the error
conditions don’t lead to failures imme-
diately. Otherwise, there would be no
aging. The failures occur with a delay.

Second, the total time that the sys-
tem runs continuously can influence an
aging-related bug’s activation rate. We
can consider this runtime an aspect of
the system’s internal environment.

Obviously, both types of aging-
related bugs are Mandelbugs.

Example: Patriot system
The software fault in the Patriot mis-

sile-defense system responsible for the
Scud incident in Dhahran was the sec-
ond type of aging-related bug. To pro-
ject a target’s trajectory, the weapons-
control computer required its velocity
and the time as real values. However,
the system kept time internally as an
integer, counting tenths of seconds and
storing them in a 24-bit register. The
necessary conversion into a real value
caused imprecisions in the calculated
range where a detected target was
expected next.

For a given velocity of the target,
these inaccuracies were proportional to
the length of time that the system had
been continuously running. As a con-
sequence, the risk of failing to track,
classify, and intercept an incoming Scud
missile increased with the length of time

that the Patriot missile-defense system
operated without a reboot.

On 21 February 1991, the Patriot
Project Office warned Patriot users that
“very long runtimes” could negatively
affect the system’s targeting, implying
it should be rebooted regularly. Un-
fortunately, the Army officials assumed
that the users would not continuously
operate the Patriot systems long
enough for a failure to become immi-
nent; therefore, they did not specify the
required rejuvenation frequency.

Costs
While rejuvenation can clean inter-

nal error conditions from a system
and avoid failure occurrence, it does
incur costs.

For example, during a Web server’s
reboot, the hosted Web site might be
unavailable, or if multiple servers pro-
vide service at the same site, the run-
ning servers must share the load.

In transactions-based software sys-
tems, initiating rejuvenation can lose
jobs that the system currently serves.
The Patriot missile-defense system
reboot, which also reset the internal
clock to zero, took about 60 to 90 sec-
onds; during this time, the system
could not react to incoming missiles.

Rejuvenation, therefore, requires
optimal timing. The two main ap-
proaches are based on models and mea-
surements.

Model-based approaches use ana-
lytic models to capture system degra-
dation and rejuvenation. Under a
given rejuvenation policy—such as
“Rejuvenate an idle server if at least x
hours have passed since the last reju-
venation”—operators can then use the
model for determining the optimal
time interval x and the dependability
measures following from this policy.

The main idea behind measure-
ment-based approaches is to periodi-
cally monitor system attributes that
might show signs of software aging.
For example, a continuous increase in
the amount of used physical memory
might suggest the existence of mem-
ory leaks that would ultimately lead
to a system crash. Online-monitoring
systems can use the collected data to

assess the system’s current health and
predict aging-related failures (M.
Grottke et al., “Analysis of Software
Aging in a Web Server,” IEEE Trans.
Reliability, Sept. 2006, pp. 411-420).

E ven if software developers don’t
fully understand the faults or
know their location in the code,

software rejuvenation can help avoid
failures in the presence of aging-related
bugs. This is good news because repro-
ducing and isolating an aging-related
bug can be quite involved, similar to
other Mandelbugs.

Moreover, monitoring for signs of
software aging can even help detect
software faults that were missed dur-
ing the development and testing
phases. If, on the other hand, a devel-
oper can detect a specific aging-related
bug in the code, fixing it and distrib-
uting a software update might be
worthwhile. In the case of the Patriot
missile-defense system, a modified ver-
sion of the software was indeed pre-
pared and deployed to users. It arrived
at Dhahran on 26 February 1991—a
day after the fatal incident. ■

Acknowledgments

This work was supported by a fel-
lowship within the Postdoc Program
of the German Academic Exchange
Service.

Michael Grottke is an assistant research
professor in the Department of Electri-
cal and Computer Engineering at Duke
University. Contact him at Michael.
Grottke@duke.edu.

Kishor S. Trivedi holds the Hudson
Chair in the Department of Electrical
and Computer Engineering at Duke
University. Contact him at kst@ee.
duke.edu.

February 2007 109

Editor: Michael G. Hinchey, NASA
Software Engineering Laboratory at
NASA Goddard Space Flight Center
and Loyola College in Maryland;
michael.g.hinchey@nasa.gov

r2soft.qxp 23/1/07 12:51 PM Page 109

