
Design Patterns

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk



© 2004-2007 SEOC - Lecture Note 15 2

Reuse in Software Engineering
Software Engineering is concerned with 
processes, techniques and tools which enable 
us to build “good” systems

Object-Orientation is a methodology, 
technique, process, suite of design and 
programming languages and tools with which 
we may build good systems

Components are units of reuse and 
replacement



© 2004-2007 SEOC - Lecture Note 15 3

Examples of Types of reuse
Application system reuse: the whole of an 
application system may be reused by 
incorporating it without change into other 
systems

Component reuse: components of an 
application ranging in size from sub-systems 
to single objects may be reused

Object and function reuse: Software 
components that implement a single 
function, such as a mathematical function or 
an object class, may be reused



© 2004-2007 SEOC - Lecture Note 15 4

Problems with reuse

Increased maintenance costs

Lack of tool support

Not-invented-here syndrome

Creating and maintaining a component 
library

Finding, understanding and adapting 
reusable components



© 2004-2007 SEOC - Lecture Note 15 5

Planning Reuse: Key Factors

The development schedule for the software

The expected software lifetime

The background, skills and experience of the 
development team

The criticality of the software and its non-
functional requirements

The application domain

The platform on which the system will run



© 2004-2007 SEOC - Lecture Note 15 6

Types of Reuse

Knowledge reuse
• Artificial reuse
• Pattern reuse

Software reuse
• Code reuse
• Inheritance reuse
• Template reuse
• Components
• Framework reuse



© 2004-2007 SEOC - Lecture Note 15 7

Reuse of Knowledge: Artifact Reuse

Reuse of use cases, standards, design 
guidelines, domain-specific knowledge

Pluses: consistency between projects, 
reduced management burden, global 
comparators of quality and knowledge

Minuses: overheads, constraints on 
innovation (coder versus manager)



© 2004-2007 SEOC - Lecture Note 15 8

Reuse of Knowledge: Patterns
A design pattern is a solution to a common 
problem in the design of computer systems

Reuse of publicly documented approaches to 
solving problems (e.g., class diagrams)

Plusses: long life-span, applicable beyond 
current programming languages, applicable 
beyond Object Orientation?

Minuses: no immediate solution, no actual 
code, knowledge hard to capture/reuse.



© 2004-2007 SEOC - Lecture Note 15 9

Documenting Patters

Name

Problem

Context

Forces

Solution

Sketch

Resulting context

Rationale



© 2004-2007 SEOC - Lecture Note 15 10

Classification of UML Patterns

Creational

Structural

Behavioural



© 2004-2007 SEOC - Lecture Note 15 11

How to use a pattern

Does a patter exist that address the 
considered problem?
Does the pattern’s documentation suggest 
alternative solutions?
Is there a simple solution?
Is the context of the pattern consistent 
with the context of the problem?
Are the results of using the pattern 
acceptable?
Are there constraints?



© 2004-2007 SEOC - Lecture Note 15 12

Types of Software Reuse: Code Reuse

Reuse of (visible) source code – code reuse 
versus code salvage

Pluses: reduces written code, reduces 
development and maintenance costs

Minuses: can increase coupling, substantial 
initial investment



© 2004-2007 SEOC - Lecture Note 15 13

Types of Software Reuse: Inheritance

Using inheritance to reuse code behaviour

Pluses: takes advantage of existing 
behaviour, decrease development time and 
cost

Minuses: can conflict with component reuse, 
can lead to fragile class hierarchy – difficult 
to maintain and enhance



© 2004-2007 SEOC - Lecture Note 15 14

Types of Software Reuse: Template Reuse

Reuse of common data format/layout (e.g., 
document templates, web-page templates, 
etc.)

Pluses: increase consistency and quality, 
decrease data entry time

Minuses: needs to be simple, easy to use, 
consistent among groups



© 2004-2007 SEOC - Lecture Note 15 15

Types of Software Reuse: Component

Analogy to electronic circuits: software 
“plug-ins”

Reuse of prebuilt, fully encapsulated 
“components”; typically self-sufficient and 
provide only one concept (high cohesion)

Pluses: greater scope for reuse, common 
platforms (e.g., JVM) more widespread, 
third party component development

Minuses: development time, genericity, need 
large libraries to be useful



© 2004-2007 SEOC - Lecture Note 15 16

Types of Software Reuse: Framework

Collection of basic functionality of common 
technical or business domain (generic 
“circuit boards”) for components

Pluses: can account for 80% of code

Minuses: substantial complexity, leading to 
long learning process, platform specific, 
framework compatibility issues leading to 
vendor specificity, implement easy 80%



© 2004-2007 SEOC - Lecture Note 15 17

Reuse Pitfalls

Underestimating the difficulty of reuse

Having or setting unrealistic expectations

Not investing in reuse

Being too focused on code reuse

Generalising after the fact

Allowing too many connections



© 2004-2007 SEOC - Lecture Note 15 18

Difficulties with Component Development

Economic
• Small business do not have long term stability and 

freedom required

Where is the third party component 
market?
• Effort in (re)using components
• Cross-platform and cross-vendor compatibility
• Many common concepts, few common components
• Some success: user interfaces, data management, 

thread management, data sharing between 
applications

• Most successful: GUIs and data handling (e.g., 
Abstract Data Types)



© 2004-2007 SEOC - Lecture Note 15 19

Readings

UML course textbook
• Chapter 17 on Design Patterns

T. Winn, P. Calder, Is This a Pattern?. In 
IEEE Software, January/February 2002.



© 2004-2007 SEOC - Lecture Note 15 20

Summary
Many types of reuse – of both knowledge 
and software
• Each has pluses and minuses

Component reuse is a form of software 
reuse
• Encapsulation, high cohesion, specified interfaces 

explicit context dependencies
• Component development requires significant time 

and effort
• As does component reuse
• Component reuse has been successful for 

interfaces and data handling
Employing reuse requires management


	Design Patterns
	Reuse in Software Engineering
	Examples of Types of reuse
	Problems with reuse
	Planning Reuse: Key Factors
	Types of Reuse
	Reuse of Knowledge: Artifact Reuse
	Reuse of Knowledge: Patterns
	Documenting Patters
	Classification of UML Patterns
	How to use a pattern
	Types of Software Reuse: Code Reuse
	Types of Software Reuse: Inheritance
	Types of Software Reuse: Template Reuse
	Types of Software Reuse: Component
	Types of Software Reuse: Framework
	Reuse Pitfalls
	Difficulties with Component Development
	Readings
	Summary

