Deployment Diagrams

Massimo Felici

JCMB-1402 0131 650 5899

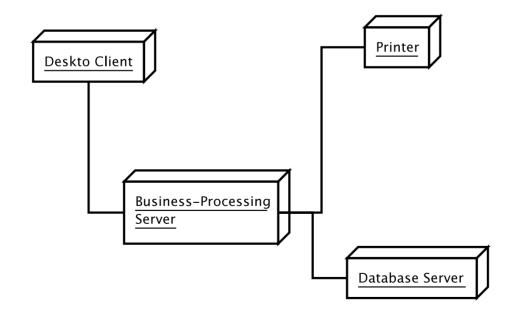
1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk

Deployment Diagrams

- What existing systems will system need to interact or integrate with?
- How robust does system need to be (e.g., redundant hardware in case of a system failure)?
- What and who will connect to or interact with system, and how will they do it
- What middleware, including the operating system and communications approaches and protocols, will system use?
- What hardware and software will users directly interact with (PCs, network computers, browsers, etc.)?
- How will you monitor the system once deployed?
- How secure does the system need to be (needs a firewall, physically secure hardware, etc.)?

Deployment Diagrams


- show the structure of the run-time system
- capture the hardware that will be used to implement the system and the links between different items of hardware.
- Model physical hardware elements and the communication paths between them
- Plan the architecture of a system
- Document the deployment of software components or nodes

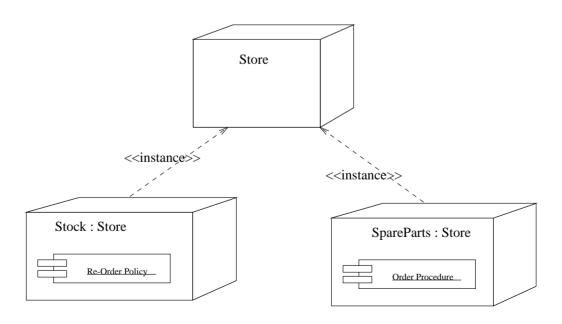
Deployment Diagrams - Notation

Node	Communication Path	Artefacts
node name	node 1 node 2	< <artifact>> [] Artifact1</artifact>
<device>> <<execution environment="">></execution></device>	Deployment Specifications	Deployment of Artefacts
«device» :node	<deployment spec="">></deployment>	< <deploy>></deploy>

Communication Association

A communication associations between nodes indicates a communication path between the nodes that allows components on the nodes to communicate with one another

Deployment Planning


- How will your system be installed?
- If different versions of the system will be in production at the same time, how will you resolve differences?
- What physical sites do you need to deploy to and in what order?
- How will you train your users?

How to produce deployment diagrams

- 1. Decide on the purpose of the diagram
- 2. Add nodes to the diagram
- 3. Add communication associations to the diagram
- 4. Add other elements to the diagram, such as components or active objects, if required
- 5. Add dependencies between components and objects, if required

Modeling Business Process

- Business modeling using nodes and components is an effective means of capturing non-computer based processes and entities
- This can be done very early in development, to complement the use case model and other business modeling
- Components are the business procedures and documents; the nodes ("run-time structure") are the organization units and resources (human and other) of the business

Readings

- UML course textbook
 - · Chapter 14 on Deployment Diagrams

Summary

- Deployment Diagrams
 - Rationale
 - Notation
- How to produce Deployment Diagrams