
Software Testing

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk



© 2004-2007 SEOC - Lecture Note 13 2

What is Software Testing?

Software Testing is the design and 
implementation of a special kind of software 
system: one that exercises another software 
system with the intent of finding bugs



© 2004-2007 SEOC - Lecture Note 13 3

Terminology

Fault: an imperfection that may lead to a 
failure
• E.g., missing/incorrect code that may result in a 

failure
• Bug: another name for a fault in code

Error: where the system state is incorrect 
but may not have been observed

Failure: some failure to deliver the 
expected service that is observable to the 
user



© 2004-2007 SEOC - Lecture Note 13 4

Testing Goals

Validation testing
• To demonstrate to the developer and the system 

customer that the software meets its 
requirements

• A successful test shows that the system operates 
as intended

Defect testing
• To discover faults or defects in the software 

where its behavior is incorrect or not in 
conformance with its specification

• A successful test is a test that makes the system 
perform incorrectly and so exposes a defect in the 
system



© 2004-2007 SEOC - Lecture Note 13 5

Effectiveness vs. Efficiency

Test Effectiveness
• Relative ability of testing strategy to find bugs in 

the software

Test Efficiency
• Relative cost of finding a bug in the software 

under test



© 2004-2007 SEOC - Lecture Note 13 6

What is a successful test?

Pass
• Status of a completed test case whose actual 

results are the same as the expected results

No Pass
• Status of a completed software test case whose 

actual results differ from the expected ones
• “Successful” test (i.e., we want this to happen)



© 2004-2007 SEOC - Lecture Note 13 7

Software Testing Features

The scope of testing
• The different levels of the system that testing 

addresses 

Test techniques
• Some of the approaches to building and applying 

tests

Test management
• How we manage the testing process to maximize 

the effectiveness and efficiency of the process 
for a given product



© 2004-2007 SEOC - Lecture Note 13 8

Testing scope

“Testing in the small” (unit testing)
• Exercising the smallest executable units of the 

system

“Testing the build” (integration testing)
• Finding problems in the interaction between 

components

“Testing in the large” (system testing)
• Putting the entire system to test



© 2004-2007 SEOC - Lecture Note 13 9

Testing Categorization

Fault-directed testing
• Unit testing
• Integration testing

Conformance-directed testing
• System testing
• Acceptance testing



© 2004-2007 SEOC - Lecture Note 13 10

Testing “in the small”
Unit Testing
• Exercising the smallest individually executable code units
• It is a defect testing process.
• Component or unit testing is the process of testing individual 

components in isolation.

Components may be
• Individual functions or methods within an object
• Object classes with several attributes and methods
• Composite components with defined interfaces used to 

access their functionality

Objectives
• Finding faults
• Assure correct functional behaviour of units

Usually performed by programmers



© 2004-2007 SEOC - Lecture Note 13 11

Object Class Testing

Complete test coverage of a class involves
• Testing all operations associated with an object
• Setting and interrogating all object attributes
• Exercising the object in all possible states

Inheritance makes it more difficult to 
design object class tests as the information 
to be tested is not localised



© 2004-2007 SEOC - Lecture Note 13 12

An Example of Object Class Testing

Need to define test cases for
• reportWeather, calibrate, test, startup and 

shutdown
Using a state model, identify sequences of 
state transitions to be tested and the event 
sequences to cause these transitions
For example
• Waiting -> Calibrating -> Testing -> Transmitting -> 

Waiting



© 2004-2007 SEOC - Lecture Note 13 13

Interface Testing

Objectives are to detect faults due to 
interface errors or invalid assumptions 
about interfaces

Particularly important for object-oriented 
development as objects are defined by their 
interfaces



© 2004-2007 SEOC - Lecture Note 13 14

Interface Errors

Interface misuse - A calling component calls 
another component and makes an error in its 
use of its interface e.g. parameters in the 
wrong order

Interface misunderstanding - A calling 
component embeds assumptions about the 
behaviour of the called component which are 
incorrect

Timing errors - The called and the calling 
component operate at different speeds and 
out-of-date information is accessed



© 2004-2007 SEOC - Lecture Note 13 15

Testing the “build”

Integration Testing
• Exercising two or more units or components

Objectives
• Detect interface errors
• Assure the functionality of the combined units

Performed by programmers or testing group

Issues
• Strategy for combining units?
• Compatibility with third-party components (e.g., 

Commercial Of The Shelf – COTS)?
• Correctness of third-party components?



© 2004-2007 SEOC - Lecture Note 13 16

Integration Testing
Involves building a system 
from its components and 
testing it for problems that 
arise from component 
interactions.

Top-down integration
• Develop the skeleton of the 

system and populate it with 
components.

Bottom-up integration
• Integrate infrastructure 

components then add 
functional components.

To simplify error localisation, 
systems should be 
incrementally integrated.



© 2004-2007 SEOC - Lecture Note 13 17

Testing “in the large”: System

System Testing
• Exercising the functionality, performance, 

reliability, and security of the entire system

Objectives
• Find errors in the overall system behaviour
• Establish confidence in system functionality
• Validate non-functional system requirements

Usually performed by a separate testing 
group



© 2004-2007 SEOC - Lecture Note 13 18

Testing “in the large”: Accept

Acceptance Testing
• Operating the system in the user environment with 

standard user input scenario

Objectives
• Evaluate whether the system meets the customer 

criteria
• Determine whether the customer will accept the 

system

Usually performed by the end user



© 2004-2007 SEOC - Lecture Note 13 19

Testing “in the large”: Operation

Regression Testing
• Testing modified versions of a previously validated 

system

Objectives
• Assuring that changes to the system have not 

introduced new errors

Performed by the system itself or by a 
regression test group

Capture/Replay (CR) Tools



© 2004-2007 SEOC - Lecture Note 13 20

Test Generation Methods
Black-box testing
• No knowledge of the software structure
• Also called specification-based or functional testing
White-box testing
• Knowledge of the software structure and implementation
• White-box methods can be used for test generation and test 

adequacy analysis
• Usually used as adequacy criteria (after generation by a black-box 

method)
• Methods based on internal code structure: Statement, Branch, Path

or Data-flow coverage
Fault-based testing
• Objective is to find faults in the software, e.g., Unit testing
Model-based testing
• Use of a data or behaviour model of the software, e.g., finite state 

machine
Random testing



© 2004-2007 SEOC - Lecture Note 13 21

Structural Testing
Statement Testing: requires that very statements in the 
program be executed
Branch Testing: seeks to ensure that every branch has been 
executed.
• Branch coverage can be checked by probes inserted at the points in 

the program that represent arcs from branch points in the 
flowgraph.

• This instrumentation suffices for statement coverage as well.
Expression Testing: requires that every expression assume a 
variety of valued during a test in such a way that no 
expression can be replaced by a simpler expression and still 
pass the test.
• Expression testing does require significant runtime support for the 

instrumentation.
Path Testing: data is selected to ensure that all paths of the 
program have been executed.
• In practice, path coverage is impossible to achieve



© 2004-2007 SEOC - Lecture Note 13 22

Issues with Structural Testing

Is code coverage effective at detecting 
faults?

How much coverage is enough?

Is one coverage criterion better than 
another?

Is coverage testing more effective that 
random test case selection?



© 2004-2007 SEOC - Lecture Note 13 23

Test Management
Concerns
• Attitude to testing
• Effective documentation and control of the whole test 

process
• Documentation of tests and control of the test codebase
• Independence of test activities
• Costing and estimation of test activities
• Termination: deciding when to stop
• Managing effective reuse
Activities
• Test Planning
• Test case generation – can involve massive amounts of data 

for some systems
• Test environment development
• Execution of tests
• Evaluating test results
• Problem reporting
• Defect tracking



From Use Cases to Test Cases



© 2004-2007 SEOC - Lecture Note 13 25

A (Black-box) Tester’s Viewpoint

What is the system supposed to do?

What are the things that can go wrong?

How can I create and record a set of 
testing scenarios?

How will I know when to stop testing?

Is there anything else the system is 
supposed to do?



© 2004-2007 SEOC - Lecture Note 13 26

From Use Cases to Test cases

One of the greatest benefits of use cases is 
that they provide a set of assets that can 
be used to drive the testing process
Use cases can directly drive, or seed, the 
development of test cases
The scenarios of a use case create 
templates for individual test cases
Adding data values completes the test cases
Testing non-functional requirement 
completes the testing process



© 2004-2007 SEOC - Lecture Note 13 27

Deriving Test Cases from Use Cases

1. Identify the use-case scenarios

2. For each scenario, identify one or more 
test cases

3. For each test case, identify the conditions 
that will cause it to execute

4. Complete the test case by adding data 
values



© 2004-2007 SEOC - Lecture Note 13 28

Managing Test Coverage

Select the most appropriate or critical use 
cases for the most thorough testing
• Often these use cases are primary user interfaces, 

are architecturally significant, or present a hazard 
or hardship of some kind to the user should a 
defect remain undiscovered

Chose each use case to test based on a 
balance between cost, risk, and necessity of 
verifying the use case

Determine the relative importance of your 
use cases by using priorities specific to your 
context



© 2004-2007 SEOC - Lecture Note 13 29

Black-box vs. White-box Testing
For every use case, there is a use case realization that 
represents how the system is designed to accomplish the use 
case

The use case itself lives in the requirements domain and simply 
specify necessary behaviour

The use-case realization lives inside the solution space and 
describes how the behaviour is accomplished by the system

Use Case

Requirements Domain

Use Case
realization

Solution Domain



© 2004-2007 SEOC - Lecture Note 13 30

An Example of Use Case-based Testing



© 2004-2007 SEOC - Lecture Note 13 31

Is a Use Case a Test Case?
NO
Test cases
• Test cases form the foundation on which to design and 

develop test procedures
• The “depth” of the testing activity is proportional to the 

number of test cases
• The scale of the test effort is proportional to the number of 

use cases
• Test design and development, and the resources needed, are 

largely governed by the required test cases
Use-case Scenarios
• A scenario, or an instance of a use case, is a use-case 

execution wherein a specific user executes the use case in a 
specific way



© 2004-2007 SEOC - Lecture Note 13 32

A Matrix for Testing Specific Scenarios

Test 
Case 
ID

Scenario 
/ 
Condition

Description Data 
Value 1 
/ 
Condition 
1

Data 
Value 2 
/ 
Condition 
2 

… Expected 
Result

Actual 
Result

1 Scenario 

1

2 Scenario 
2

3 Scenario 
2



© 2004-2007 SEOC - Lecture Note 13 33

Readings

James A. Whittaker. What is Software 
Testing? And Why is it so Hard?. In IEEE 
Software, January/February 2000, pp. 70-
79.

Suggested Readings

P.C. Jorgensen, C. Erickson. Object Oriented 
Integration Testing. Communications of the 
ACM, September 1994.



© 2004-2007 SEOC - Lecture Note 13 34

Summary

Testing is a critical part of the development 
of any system

Testing can be carried out at a number of 
levels and is planned as an integral part of 
the development process

There is a wide range of approaches to test 
case generation and evolution of the 
adequacy of a test suite

Test needs to be managed effectively if it is 
to be efficient


	Software Testing
	What is Software Testing?
	Terminology
	Testing Goals
	Effectiveness vs. Efficiency
	What is a successful test?
	Software Testing Features
	Testing scope
	Testing Categorization
	Testing “in the small”
	Object Class Testing
	An Example of Object Class Testing
	Interface Testing
	Interface Errors
	Testing the “build”
	Integration Testing
	Testing “in the large”: System
	Testing “in the large”: Accept
	Testing “in the large”: Operation
	Test Generation Methods
	Structural Testing
	Issues with Structural Testing
	Test Management
	From Use Cases to Test Cases
	A (Black-box) Tester’s Viewpoint
	From Use Cases to Test cases
	Deriving Test Cases from Use Cases
	Managing Test Coverage
	Black-box vs. White-box Testing
	An Example of Use Case-based Testing
	Is a Use Case a Test Case?
	A Matrix for Testing Specific Scenarios
	Readings
	Summary

