
State Machines

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk

© 2004-2007 SEOC - Lecture Note 12 2

State Machines
State Machines or Statechart Diagrams
give us the means to control these decisions

Each state is like a “mode of operation” for
the object the Statechart Diagram is
considering

© 2004-2007 SEOC - Lecture Note 12 3

Activity vs. State Machines
In UML semantics Activity Diagrams are reducible
to State Machines with some additional notations
In Activity Diagrams the vertices represent the
carrying out of an activity and the edges represent
the transition on the completion of one collection
of activities to the commencement of a new
collection of activities
Activity Diagrams capture high level activities’
aspects
In State Machines the vertices represent states
of an object in a class and edges represent
occurrences of events

© 2004-2007 SEOC - Lecture Note 12 4

State Machine Basics
Simple,

Complex States
• Composite and Submachine States
• Concurrent Substates
• History States
• Synch States

Transitions

Synchronization Bars and Decision Points

Transition types

Transitions to/from Composite States

Actions

© 2004-2007 SEOC - Lecture Note 12 5

Events
Internal or External Events trigger some
activity that changes the state of the
system and of some of its parts

Events pass information, which is elaborated
by Objects operations. Objects realize
Events

Design involves examining events in a State
Machine and considering how those events
will be supported by system objects

© 2004-2007 SEOC - Lecture Note 12 6

States
A state is a condition of being at a certain time
Objects (or Systems) can be viewed as moving from
state to state
A point in the lifecycle of a model element that
satisfies some condition, where some particular
action is being performed or where some event is
waited
Start and End States

© 2004-2007 SEOC - Lecture Note 12 7

Actions

States can trigger actions
States can have a second compartment that
contains actions or activities performed
while an entity is in a given state
An action is an atomic execution and
therefore completes without interruption
Five triggers for actions:
• On Entry, Do, On Event, On Exit and Include

An activity captures complex behaviour that
may run for a long duration
• An activity may be interrupted by events, in which

case it does not complete

© 2004-2007 SEOC - Lecture Note 12 8

Simple and Composite States

Simple states - simplest of all states, they
have no substates
Composite states – have one or more regions
for substates.
Submachine states – semantically equivalent
to composite states, submachine states have
substates that are contained within a
substate machine
An History State - indicated by a circle
with an H inside it - allows the re-entering
of a composite state at the point which it
was last left

© 2004-2007 SEOC - Lecture Note 12 9

Concurrent Substates and Regions

Concurrent Substates are independent and
can complete at different times

Each substate is separated from the others
by a dashed line

© 2004-2007 SEOC - Lecture Note 12 10

Transitions
Viewing a system as a set of states and transitions between
states is very useful for describing complex behaviors
Understanding state transitions is part of system analysis and
design
A Transition is the movement from one state to another state
Transitions between states occur as follows:
1. An element is in a source state
2. An event occurs
3. An action is performed
4. The element enters a target state
Multiple transitions occur either when different events result in a
state terminating or when there are guard conditions on the
transitions
A transition without an event and action is known as automatic
transitions

© 2004-2007 SEOC - Lecture Note 12 11

A Transition Example

Transitions between the Credit and Debit
states of an Account class

Debit Credit

charge

payment

© 2004-2007 SEOC - Lecture Note 12 12

Transition Types

Compound Transition – A representation of
the change from one complete state machine
configuration to another.
High-level Transition – A transition from a
composite state.
Internal Transition – A transition between
states within the same composite state.
Note that transitions between regions of
the same composite state are not allowed.
Completion Transition – A transition from a
state that has no explicit trigger.

© 2004-2007 SEOC - Lecture Note 12 13

Synchronization Bars and Decision Points

Synchronization Bars
• Allow the representation of concurrent states
• Let transitions to split or combine
• It is important when the overall state of a class is

split into concurrent states that these states are
re-combined on the same diagram

Decision Points
• Let a transition to split along a number of

transitions based on a condition

© 2004-2007 SEOC - Lecture Note 12 14

Transitions to/from Composite States
To composite state’s
boundary
• start the subflow at the

initial state of the
composite state

• If the composite state is
concurrent, then the
transition is to each of
the initial states

From composite state’s
boundary
• Immediate and effective

on any of the substates
To the substates
From substates out to
other states

© 2004-2007 SEOC - Lecture Note 12 15

An Example of a Very Complex State

TCAS
Traffic Alert /Collision

Avoidance System

© 2004-2007 SEOC - Lecture Note 12 16

Designing Classes with States Diagrams
Keep the state diagram simple
• State diagrams can very quickly become extremely complex

and confusing
• At all time, you should follow the aesthetic rule: “Less is

More”
If the state diagram gets too complex consider
splitting it into smaller classes

Document states thoroughly

Check consistency with the other view of the
dynamics

Think about compound state changes in a
collaboration or sequence

© 2004-2007 SEOC - Lecture Note 12 17

Building Statechart Diagrams
1. Identify entities that have complex behaviour - Identify a class

participating in behavour whose lifecycle is to be specified
2. Model states - Determine the initial and final states of the entity
3. Model transitions
4. Model events - Identify the events that affect the entity
5. Working from the initial state, trace the impact of events and

identify intermediate states
6. Identify any entry and exit actions on the states
7. Expand states using substates where necessary
8. If the entity is a class, check that the action in the state are

supported by the operations and relationships of the class, and if
not extend the class

9. Refine and elaborate as required

© 2004-2007 SEOC - Lecture Note 12 18

A Simple Statechart Model
A Simple Microwave Oven
1. Select the power level
2. Input the cooking time
3. Press start

Safety. The oven should not operate when the door is open

© 2004-2007 SEOC - Lecture Note 12 19

Types of State Machines

Behavioral state machines show the
behavior of model elements such as objects.
A behavioral state machine represents a
specific implementation of an element.

Protocol state machines show the bahavior
of a protocol. They show how participants
may trigger changes in a protocol’s state and
the corresponding changes in the system.

© 2004-2007 SEOC - Lecture Note 12 20

Some (Open) Questions
What are the benefits
of having states in a
system?
What are the costs of
having states in a
system?
Every state should have
an edge for every
message in the class - is
this the right view?
How does this
description of state
relate to design by
contract?

How would you check
that a Java
implementation was
consistent with a state
diagram?
How does this differ
with the treatment of
state in programming
languages?
What does this say
about the different
between modeling and
programming?

© 2004-2007 SEOC - Lecture Note 12 21

Readings

Readings

UML course textbook
• Chapter 12 on State Machines

Suggested Readings
• D. Harel. Statecharts: A Visual Formalism for

Complex Systems. In Science of Computer
Programming 8(1987):231-274.

© 2004-2007 SEOC - Lecture Note 12 22

Summary

Statechart Diagrams

Activity vs. Statechart Diagrams

Statechart Diagrams Basics
• States and Events, Transitions, Actions,

Synchronization Bars, Decision Points, Complex
States (i.e., Composite States, Concurrent
Substates, History States, Synch States)

Building Statechart Diagrams

	State Machines
	State Machines
	Activity vs. State Machines
	State Machine Basics
	Events
	States
	Actions
	Simple and Composite States
	Concurrent Substates and Regions
	Transitions
	A Transition Example
	Transition Types
	Synchronization Bars and Decision Points
	Transitions to/from Composite States
	An Example of a Very Complex State
	Designing Classes with States Diagrams
	Building Statechart Diagrams
	A Simple Statechart Model
	Types of State Machines
	Some (Open) Questions
	Readings
	Summary

