
Activity Diagrams

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk



© 2004-2007 SEOC - Lecture Note 11 2

Activity Diagrams

Activity Diagrams consist of activities, 
states and transitions between activities 
and states

Activity Diagrams describe
• how activities are coordinated to provide a service.
• the events needed to achieve some operation
• how the events in a single use case relate to one 

another
• how a collection of use cases coordinate to create 

a workflow for an organization

Activity Diagrams describe
• how activities are coordinated to provide a service. The service can be at 

different levels of abstraction
• the events needed to achieve some operation, particularly where the operation is 

intended to achieve a number of different things that require coordination
• how the events in a single use case relate to one another. In particular, use cases 

where activities may overlap and require coordination
• how a collection of use cases coordinate to create a workflow for an 

organization.
Activity Diagrams 
• focus on the flow of activities involved in a single process 
• show how activities depend on one another
• capture activities that are made up of smaller actions.



© 2004-2007 SEOC - Lecture Note 11 3

Activity Diagrams’ Rationale
Model business workflows
Identify candidate use cases, through the 
examination of business workflows
Identify pre- and post-conditions for use 
cases
Model workflow between/within use cases
Model complex workflows in operations on 
objects
Model in detail complex activities in a high 
level activity diagram



© 2004-2007 SEOC - Lecture Note 11 4

Activity Diagram Basics

Activities and Actions

Transitions and Activity Edges

Tokens and Activity Nodes

Control Nodes
• Initial and Final Nodes
• Forks and Joins
• Decision and Merge Points

States

Swimlanes



© 2004-2007 SEOC - Lecture Note 11 5

Activities and Actions
An Activity is the process being modeled

Activities are the vertices of the diagram

An Activity is a unit of work that needs to 
be carried out

Any Activity takes time

An activity is like a state where the criterion for leaving the state is the completion 
of the activity.



© 2004-2007 SEOC - Lecture Note 11 6

Actions

An Action is a step in the overall activity
The work can be documented as Actions in 
the activity
There are four ways in which an action can 
be triggered
• On Entry - as soon as the activity starts
• Do - during lifetime of the activity
• On Event - in response to an event
• On Exit - just before the activity completes



© 2004-2007 SEOC - Lecture Note 11 7

Transitions or Activity Edges

A Transition is the movement from one 
activity to another, the change from one 
state to another, or the movement between 
a state and an activity in either direction

Transitions: unlabelled arrows from one 
activity to the next. 

Transitions take place when one activity is 
complete and the next can commence



© 2004-2007 SEOC - Lecture Note 11 8

Activity Edges

The flow of an activity is shown using 
arrowed lines called edges or paths

Control-flow Transitions indicate the order 
of action states

Object-flow Transitions indicate that an 
action state inputs or outputs an object

Time could be a factor in an activity. Time events are drawn with an hourglass 
symbol.



© 2004-2007 SEOC - Lecture Note 11 9

Tokens

Conceptually, UML models information 
moving along an edge as a token (e.g., real 
data, an object or focus of control)
Each edge may have 
• a weight associated with it that indicates how 

many tokens must be available before the tokens 
are presented to the target action

• a guard condition



© 2004-2007 SEOC - Lecture Note 11 10

Activity Nodes

UML 2.0 defines several types of activity 
nodes to model different types of 
information flow
• Parameters nodes
• Object nodes
• (input or output) Pins – special notation for object 

nodes; Exception pins, value pins



© 2004-2007 SEOC - Lecture Note 11 11

Initial and Final Nodes

An initial node is the starting point for an 
activity
Two types of final nodes: activity final and 
flow final
Activity final nodes terminate the entire 
activity
Flow final nodes terminate a path through 
an activity, but not the entire activity
It is possible to have multiple initial nodes 
and final nodes



© 2004-2007 SEOC - Lecture Note 11 12

Forks

A transition can be split into multiple paths 
and multiple paths combined into a single 
transitions by using a synchronization bar
A synchronization may have many in-arcs 
from activities and a number of out-arcs to 
activities
A fork is where the paths split
On an occurrence of the transition all the 
activities with arcs from the transition are 
initiated
A fork node splits the current flow through 
an activity into multiple concurrent flows

In a detailed design model, you can use forks to represent multiple processes or 
multiple threads in a program.



© 2004-2007 SEOC - Lecture Note 11 13

Joins

A join is where the paths meet
The bar represents synchronization of the 
completion of those activities with arcs into 
the transition
A join synchronizes multiple flows of an 
activity back to a single flow of execution



© 2004-2007 SEOC - Lecture Note 11 14

Decision and Merge Points
A Decision Point shows where the exit transition 
from a state or activity may branch in alternative 
directions depending on a condition
A Decision involves selecting one control-flow 
transition out of many control-flow transitions 
based on a condition
Each branched edge contains a guard condition
Guard Expressions (inside []) label the transitions 
coming out of a branch
A merge brings together alternate flows into a 
single output flow – note that it does not 
synchronize multiple concurrent flows



© 2004-2007 SEOC - Lecture Note 11 15

States
A state in an activity diagram is a point 
where some event needs to take place 
before activity can continue

Activities and States are similar
• States carry out actions as activities do
• Activities need to complete their actions before 

exiting
• States are used to imply waiting, not doing

It is possible to show an object changing 
states as it flows through an activity



© 2004-2007 SEOC - Lecture Note 11 16

Start and End States

The Start state is the entry point to a flow.
There can be several End states. Multiple 
End states can be used to indicated 
different follow-on processes from a 
particular process
Start and End states can have actions too
Mal-formed diagrams: it is possible to form 
ill-formed diagrams that require multiple 
activations of activities or can allow 
deadlock



© 2004-2007 SEOC - Lecture Note 11 17

Swimlanes

Swimlanes (or activity partitions) indicate 
where activities take place. 
Swimlanes can also be used to identify areas 
at the technology level where activities are 
carried out
Swimlanes allow the partition an activity 
diagram so that parts of it appear in the 
swimlane relevant to that element in the 
partition

Partitions may be constructed on the basis of: 
• the class and actor doing the activity 
• Partitioning by class and actor can help to identify new associations that have 

not been documented in the Class model
• the use case the activity belongs to
• Partitioning by use cases can help document how use cases interact



© 2004-2007 SEOC - Lecture Note 11 18

Sending and Receiving Signals

In activity diagrams, signals represent 
interactions with external participants
Signals are messages that can be sent or 
received
A receive signal has the effect of waking up 
an action in your activity diagram
Send signals are signals sent to external 
participants

Note that combining send and receive signals results in behavior similar to 
synchronous call, or a call that waits for a response. It is common to combine send 
and receive signals in activity diagrams, because you often need a response to the 
signal you sent.



© 2004-2007 SEOC - Lecture Note 11 19

Advanced Activity Modeling
Connectors
UML 2.0 provides supports 
for modeling Exception 
Handling
It is possible to show that an 
action, or set of actions, 
executes over a collection of 
input data by placing the 
action in an expansion region
(<<parallel>>, <<iterative>> or 
<<stream>>)
UML 2.0 defines a construct 
to mode looping in activity 
diagrams. A loop node has 
three subregions: setup, 
body and test

An action is said to be 
streaming if it can produce 
output while it is processing 
input
Interruptible activity region
UML 2.0 introduces a new 
type of activity node, called 
the central buffer node, 
that provides a place to 
specify queuing functionality 
for data passing between 
object nodes
A data store node is a 
special type of central 
buffer node that copies all 
data that passes through it



© 2004-2007 SEOC - Lecture Note 11 20

How to construct Activity Diagrams
Activity Diagrams for Business Modeling
1. Finding business actors and use cases

2. Identifying key scenarios of business use cases

3. Combining the scenarios to produce comprehensive 
workflows described using activity diagrams

4. Where appropriate, mapping activities to business 
areas and recording this using swimlines

5. Refining complicated high level activities similarly, 
nested activity diagrams



© 2004-2007 SEOC - Lecture Note 11 21

How to construct Activity Diagrams
Activity Diagrams for Use Case Modeling
1. Finding system Actors, Classes and use cases
2. Identifying key scenarios of system use cases
3. Combining the scenarios to produce 

comprehensive workflows described using activity 
diagrams

4. Where significant object behavior is triggered by 
a workflow, adding object flows to the diagrams

5. Where workflows cross technology boundaries, 
using swimlines to map the activities

6. Refining complicated high level activities similarly, 
nested activity diagrams



© 2004-2007 SEOC - Lecture Note 11 22

An Example of Activity Diagram



© 2004-2007 SEOC - Lecture Note 11 23

An Example of Activity Diagram



© 2004-2007 SEOC - Lecture Note 11 24

Readings

UML course textbook
• Chapter 11 on Activities



© 2004-2007 SEOC - Lecture Note 11 25

Summary

Activity Diagrams are good for describing 
synchronization and concurrency between 
activities

Activity diagrams are useful for capturing 
detailed activities, but they can also capture 
elements of the high level workflow the 
system is intended to support

Partitioning can be helpful in investigating 
responsibilities for interactions and 
associations between objects and actors


