Sequence Diagrams

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk

What are Sequence Diagrams?

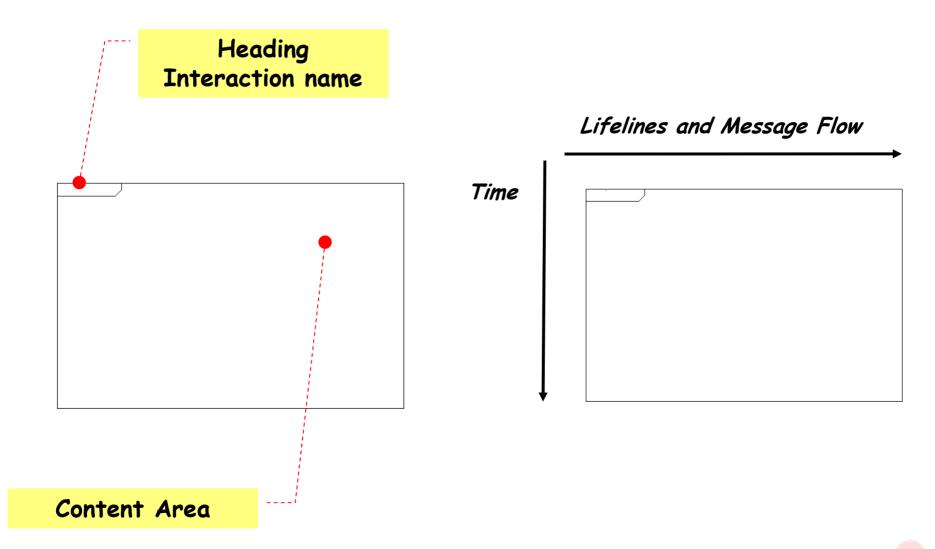
- Interactions Diagrams
 - · Sequence diagrams
 - · Interaction overview diagrams
 - · Timing diagrams
 - · Communication diagrams
- Interaction diagrams model important runtime interactions between the parts that make up the system
- Sequence Diagrams are interaction diagrams that detail how operations are carried out

What Do Sequence Diagrams Model?

- capture the interaction between objects in the context of a collaboration
- show object instances that play the roles defined in a collaboration
- don't show the structural relationships between objects
- show the order of the interaction visually by using the vertical axis of the diagram to represent time what messages are sent and when

Participants in a Sequence Diagram

- A sequence diagram is made up of a collection of participants
- Participants the system parts that interact each other during the sequence
- Classes or Objects: each object (class) in the interaction is represented by its named icon along the top of the diagram


Sequence Diagrams at a Glance

 Sequence Diagrams show elements as they interact over time, showing interactions or interaction instances

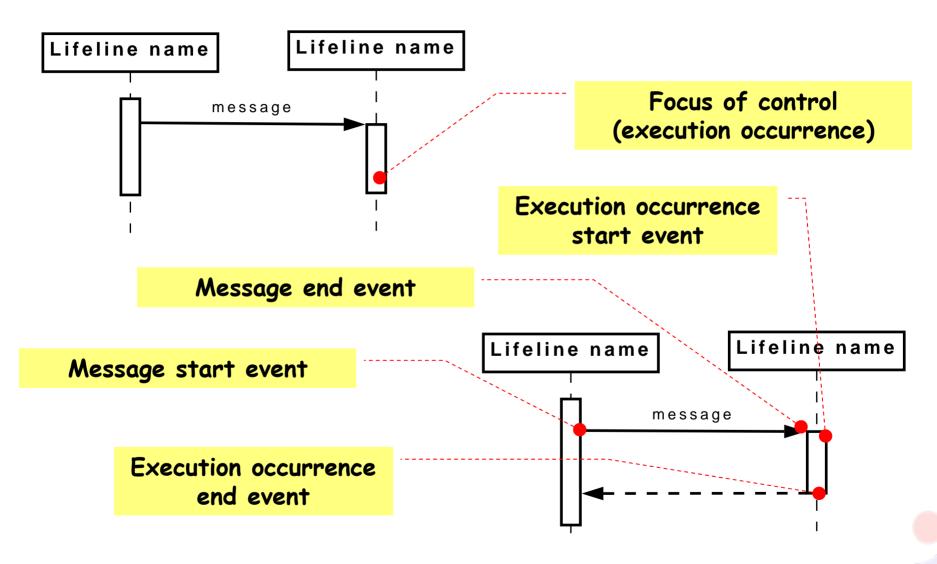
Notations

 Frames, Lifelines, Messages and Focus Control, Combined Fragments, Interaction Occurrences, States, Continuations, Textual Annotation and Tabular Notation

Frames

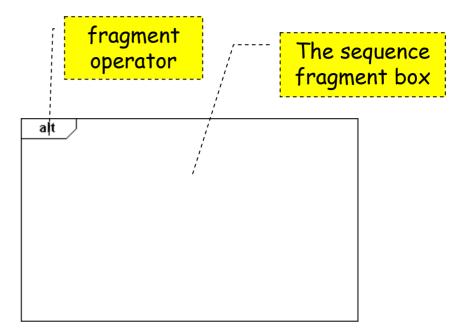
Lifelines

- Sequence diagrams are organized according to time
- Each participant has a corresponding lifeline
- Lifelines: each vertical dotted line is a lifeline, representing the time that an object exists
- Lifeline name


[connectable-element-name][`[`selector']'][:class-name][decomposition]

Lifeline name

Examples of lifeline names


Syntax	Explanation	
seoclecturer	An object named secolecturer	
seoclecturer : Lecturer	An object names seoclecturer of class Lectuer.	
:Lecturer	An anonymous object of class Lecturer	
lecturer[i]	The object lecturer that is selected by the index value <i>i</i> .	
s ref sd3	A subsystem s whose internal interaction is shown in sequence diagram sd3 (decomposition).	
self	The connectable element that owns the interaction shown in the sequence diagram	

Messages and Focus of Control

Sequence Fragments

- UML 2.0 introduces
 Sequence (or Interaction)
 Frames
- A sequence fragment is represented as a box, called a combined fragment, which encloses a portion of the interactions within a sequence diagram
- The fragment operator (in the top left cornet) indicates the type of fragment
- Fragment types: ref, assert, loop, break, alt, opt, neg

 Sequence fragments make it easier to create and maintain accurate sequence diagrams

Messages

- Messages (or signals) on a sequence diagram are specified using an arrow from the participant (message caller) that wants to pass the message to the participant (message receiver) that is to receive the message
- A Message (or stimulus) is represented as an arrow going from the sender to the top of the focus of control (i.e., execution occurrence) of the message on the receiver's lifeline

Message Type Notation

	→	>	▶
Synchronous Or Call	Asynchronous	Creation	Reply (Return)

Message and Argument Syntax

Message Syntax

[attribute=] signal-or-operation-name [(argument)] [:return-value]|*

Argument syntax

[parameter-name=] argument-value | attribute=out-parameter-name [:argument-value] | -

Creation and Destruction Messages

- Element Creation: when an element is created during an interaction, the communication that creates the element is shown with its arrowhead to the element
- Element Destruction: When an element is destroyed during an interaction, the communication that destroys the element is shown with its arrowhead to the element's lifeline where the destruction is marked with a large X symbol

Combined Frames

- It is possible to combine frames in order to capture, e.g., loops or branches.
- Combined fragment keywords: alt, opt, brak, par, seq, strict, neg, critical, ignore, consider, assert and loop
- Other ways in UML 2.0 of hiding information are by interaction occurrences and continuations

Other notations

- States it is possible to place states on lifelines (e.g., pre and post conditions)
- Textual notations (e.g., comments, time constraints, duration constraints)
- Tabular notation

Timing

- Constraints are usually used to show timing constraints on messages. They can apply to the timing of one message or intervals between messages.
- Durations. The duration of activations or the time between messages can be show with construction marks.

How to Produce Sequence Diagrams

1. Decide on Context: Identify behavior (or use case) to be specified

2. Identify structural elements:

- 1. Model objects (classes)
- 2. Model lifelines
- 3. Model activations
- 4. Model messages
- 5. Model Timing constraints
- 3. Refine and elaborate as required

How do interaction diagrams help?

- Check use cases
- Check class can provide an operation
 - showing how a class realizes some operation by interacting with other objects
- Describe design pattern
 - parameterizing by class provides a scheme for a generic interaction (part of Software Architecture)
- Describe how to use a component
 - · capturing how components can interact

Readings

- UML course textbook
 - · Chapter 9 on Interaction Sequence Diagrams

Summary

Sequence Diagrams

- · capture some elements of the dynamics of systems
- Support a number of different activities
- Describe interaction in some detail, including timing

Dimensions

· Objects and Time

Basics

Objects, Lifelines, Activations, Messages, etc.

Timing