
Software Design
and

Class Diagrams

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk

© 2004-2007 SEOC - Lecture Note 04 2

Software Design
The SEOC course is concerned with
software design in terms of objects and
components, in particular, object-oriented
design
Object-oriented design is part of object-
oriented development where an object-
oriented strategy is used throughout the
development process
The main activities are:
• Object-oriented analysis
• Object-oriented design
• Object-oriented programming

There are various definitions about Software Design. In general, they refer to (the result of) the
process of defining a software system design consisting in the definition of the architecture,
components (or modules), interfaces and other characteristics (e.g., design constraints) of a system or
component. Software design provides a (traceability) link between requirements and an
implementable specification. It is a pervasive activity for which often there is no definitive solution.
Design solutions are highly context dependent. Key Design techniques and issues involve the
identification of a overall structure or architecture, the identification of the main elements of
software that need to be managed. The design activities involve decomposing system (components)
into smaller more manageable (definitions of) components that are easily implementable. Usually,
design is a two stage process: architectural design and detailed design. Architectural design (or High-
level Design) involves (the identification and specification of) the components forming the system
and how they relate one another. Moreover, it is concerned with those issues related to the system
architecture. Detailed design deals with the function and characteristics of components and how they
relate to the overall architecture.
Suggested Readings
• I. Sommerville. Software Engineering, Eighth Edition, Addison-Wesley 2007.

• Chapter 14 on Object-oriented design

© 2004-2007 SEOC - Lecture Note 04 3

Key Issues in Software Design

Concurrency

Workflow and event handling

Distribution

Error handling and recovery

Persistence of data

Can you think through some of these issues
for the SEOC project?

Concurrency. Often there is significant interaction that needs management – What
are the main concurrent activities? How do we manage their interaction? For
instance, in the VolBank example matching and specifying skills and needs goes on
concurrently.

Workflow and event handling – What are the activities inside a workflow? How do
we handle events?

Distribution - How is the system distributed over physical (and virtual) systems?

Error handling and recovery – What are suitable actions when a physical component
fails (e.g., the database server)? How to handle exceptional circumstances in the
world? For instance, in the VolBank example, a volunteer fails to appear.

Persistence of data – Does data need to persist across uses of the system, how
complex? How much of the state of the process?

Can you think through some of these issues for VolBank?

© 2004-2007 SEOC - Lecture Note 04 4

Key Design Techniques
Abstraction
• ignoring detail to get the high level structure right

Decomposition and Modularization
• big systems are composed from small components

Encapsulation/information hiding
• the ability to hide detail (linked to abstraction)

Defined interfaces
• separable from implementation

Evaluation of structure
• Coupling: How interlinked a component is
• Cohesion: How coherent a component is

© 2004-2007 SEOC - Lecture Note 04 5

Architecture and Structure
Architectural structures and viewpoints

Architectural styles

Design patterns
• small-scale patterns to guide the designer

Families and frameworks
• component sets and ways of plugging them

together
• software product lines

Architectural design

Architectural structures and viewpoints deal with system facets (e.g., physical view, functional or
logical view, security view, etc.) separately. Depending on the architectural emphasis, there are
different styles, for example, Three-tier architecture for a distributed system (interface, middleware,
back-end database), Blackboard, Layered architectures, Model-View-Controller, Time-triggered and
so forth.

Architectural Design supports stakeholder communication, system analysis and large-scale reuse. It
is possible to distinguish diverse design strategies: function oriented (sees the design of the functions
as primary), data oriented (sees the data as the primary structured element and drives design from
there), object oriented (sees objects as the primary element of design). There is no clear distinction
between Sub-systems and modules. Intuitively, sub-systems are independent and composed of
modules, have defined interfaces for communication with other sub-systems. Modules are system
components and provide/make use of service(s) to/provided by other modules.

The system architecture affects the quality attributes (e.g., performance, security, availability,
modifiability, portability, reusability, testability, maintainability, etc.) of a system. It supports quality
analysis (e.g., reviewing techniques, static analysis, simulation, performance analysis, prototyping,
etc.). It allows to define (predictive) measures (i.e., metrics) on the design, but they are usually very
dependent on the process in use. The software architecture is the fundamental framework for
structuring the system. Different architectural models (e.g., system organizational models, modular
decomposition models and control models) may be developed. Design decisions enhance system
attributes like, for instance, performance (e.g., localize operations to minimize sub-system
communication), security (e.g., use a layered architecture with critical assets in inner layers), safety
(e.g., isolate safety-critical components), availability (e.g., include redundant components in the
architecture) and maintainability (e.g., use fine-grain self-contained components).
Readings

• P. Kruchten, H. Obbink, J. Stafford. The Past, Present and Future of Software Architecture.
IEEE Software, March/April 2006.

© 2004-2007 SEOC - Lecture Note 04 6

Architecture Models
A static structural model that shows the sub-
systems or components that are to be developed as
separate units.

A dynamic process model that shows how the
system is organized into processes at run-time.
This may be different from the static model.

An interface model that defines the services
offered by each sub-system through their public
interface.

A relationship model that shows relationships such
as data flow between the sub-systems.

Comparing Architecture Design Notations
• Modeling Components: Interface, Types, Semantics, Constraints, Evolution, Non-functional

Properties
• Modeling Connectors: Interface, Types, Semantics, Constraints, Evolution, Non-functional

Properties
• Modeling Configurations: Understandable Specifications, Compositionality (and Conposability),

Refinement and Traceability, Heterogeneity, Scalability, Evolvability, Dynamism, Constraints,
Non-functional Properties

UML Design Notations
• Static Notations: Class and object diagrams, Component diagrams, Deployment diagrams, CRC

Cards
• Dynamic Notations: Activity diagrams, Communication diagrams, Statecharts, Sequence diagrams
What are the Architect’s Duties?
• Get it Defined, documented and communicated, Act as the emissary of the architecture, Maintain

morale
• Make sure everyone is using it (correctly), management understands it, the software and system

architectures are in synchronization, the right modeling is being done, to know that quality
attributes are going to be met, the architecture is not only the right one for operations, but also for
deployment and maintenance

• Identify architecture timely stages that support the overall organization progress, suitable tools and
design environments, (and interact) with stakeholders

• Resolve disputes and make tradeoffs, technical problems
• Manage risk identification and risk mitigation strategies associated with the architecture,

understand and plan for evolution

© 2004-2007 SEOC - Lecture Note 04 7

Class Diagrams

Support architectural design
• Provide a structural view of systems

Represent the basics of Object-Oriented
systems
• identify what classes there are, how they

interrelate and how they interact
• Capture the static structure of Object-Oriented

systems - how systems are structured rather than
how they behave

Constrain interactions and collaborations
that support functional requirements
• Link to Requirements

© 2004-2007 SEOC - Lecture Note 04 8

VolBank: A Design Example
Two possible requirements
• That a request for a volunteer should produce a list of

volunteers with appropriate skills.
• The system shall ensure the safety of both volunteers and

the people and organizations who host volunteers.

Traceability from requirements to components
• By allocating a particular requirement to a particular

component as we decompose, e.g., in VolBank, we might
require a log

• By decomposing requirements into more refined
requirements on particular components, e.g., a particular
function in VolBank might be realized across several
components

• Some requirements (e.g., usability) are harder to decompose,
e.g., it takes 30 minutes to become competent in using the
system

The second requirements, for instance, may decompose into many more specific
requirements:

• That the organization has made reasonable efforts to ensure a volunteer is bona
fide.

• That we have a confirmed address for the individual: i.e., the original address is
correct, and only the volunteer can effect a change in address.

© 2004-2007 SEOC - Lecture Note 04 9

Class Diagram Rationale
Desirable to build systems quickly and
cheaply (and to meet requirements)

Desirable to make the system easy to
maintain and modify

Warnings
• The classes should be derived from the (user)

domain – avoid abstract object
• Classes provide limited support to capture system

behaviour - avoid to capture non-functional
requirements of the system as classes

The system consists of a collection of objects in the implemented classes (e.g., there
may be a GUI coordinate human interaction with the other parts of the system).
Objects (instances of the classes) of the system realize the required behaviour.

© 2004-2007 SEOC - Lecture Note 04 10

Class Diagrams in the Life Cycle
Used throughout the development life cycle

Carry different information depending on
the phase of the development process and
the level of detail being considered
• From the problem to implementation domain

Class diagrams can be used throughout the development life cycle. They carry
different information depending on the phase of the development process and the
level of detail being considered. The contents of a class diagram will reflect this
change in emphasis during the development process. Initially, class diagrams reflect
the problem domain, which is familiar to end-users. As development progresses,
class diagrams move towards the implementation domain, which is familiar to
software engineers.

© 2004-2007 SEOC - Lecture Note 04 11

Class Diagram Basics

Classes
• Basic Class Components
• Attributes and Operations
Class Relationships
• Associations
• Generalizations
• Aggregations and Compositions

Construction involves
1. Modeling classes
2. Modeling relationships between classes and
3. Refining and elaborate as necessary

© 2004-2007 SEOC - Lecture Note 04 12

Classes and Objects

Classes represent groups of objects all with
similar roles in the system
• Structural features define what objects of the

class know
• Behavioral features define what objects of the

class can do
Classes may
• inherit attributes and services from other classes
• be used to create objects
Objects are instances of classes, real-world
and system entities

Objects are entities in a software system which represent instances of real-world
and system entities. Objects derive from things (e.g., tangible, real-world objects,
etc.), roles (e.g., classes of actors in systems like students, managers, nurses, etc.),
events (e.g., admission, registration, matriculation, etc.) and interactions (e.g.,
meetings, tutorials, etc.).
Objects are created according to some class definition. A class definition serves as a
template for objects and includes declarations of all the attributes and operations
which should be associated with an object of that class. Note that the level of detail
known or displayed for attributes and operations depends on the phase of the
development process. An object is an entity that has a state and a defined set of
operations which operate on that state. The state is represented as a set of object
attributes. The operations associated with the object provide services to other
objects, which request these services when some functionality is required.

© 2004-2007 SEOC - Lecture Note 04 13

Employee

join() : Boolean
leave() : Boolean
reture() : Boolean
changeInformation() : Boolean

name : String
address : String
employeeNumber : Integer
socialSecurityNumber : Integer
department : String
salary : Integer
taxCode : String
status : String

Basic Class Compartments
Name

Attributes
• represent the state of an

object of the class
• are descriptions of the

structural or static
features of a class

Operations
• define the way in which

objects may interact
• are descriptions of

behavioral or dynamic
features of a class

Name Attributes

Operations

© 2004-2007 SEOC - Lecture Note 04 14

Java Class Definition
class Employee {

public String name;
public String address;
public Integer employeeNumber;
public Integer socialSecurityNumber;
public String department;
public Integer salary;
public String taxCode;
/**
* current
*/

public String status;
public Boolean join() {
return null;
}
public Boolean leave() {
return null;
}
public Boolean reture() {
return null;
}
public Boolean changeInformation() {
return null;
}

}

Employee

join() : Boolean
leave() : Boolean
reture() : Boolean
changeInformation() : Boolean

name : String
address : String
employeeNumber : Integer
socialSecurityNumber : Integer
department : String
salary : Integer
taxCode : String
status : String

© 2004-2007 SEOC - Lecture Note 04 15

Attribute Definition
visibility / name : type multiplicity = default {property strings and constraints}

visibility
/ derived attribute – Attributes by relationship
allow the definition of complex attributes
name
type is the data type of the attribute or the data
returned by the operation
multiplicity specifies how many instances of the
attribute’s type are referenced by this attribute
property strings: readOnly, union, subset
<attribute-name>, redefines <attribute-name>
composite, ordered, bag, sequence, coposite
constraints

© 2004-2007 SEOC - Lecture Note 04 16

Visibility and Multiplicity

Visibility
• public (+), protected (#), package(~), private (-)
From More accessible to Less Accessible
• Warnings: Java allows access to protected parts of

a class to any class in the same package
Multiplicity specifies how many instances of
the attribute’s type are referenced by this
attribute
• [n..m] - n to m instances
• 0..1 - zero or one instance
• 0..* or * - no limit on the number of instances

(including none)
• 1 - exactly one instance
• 1..* at least one instance

© 2004-2007 SEOC - Lecture Note 04 17

Operation Definition
visibility name (parameters) : return-type {properties}

(Parameters)
direction parameter_name : type [multiplicity] = default_value {properties}

direction :in, inout, out or return
Operation constraints :preconditions,
postconditions, body conditions, query operations,
exceptions
Static operations :Specify behaviour for the class
itself; Invoked directly on the class
Methods are implementations of an operations;
Abstract classes provide operation signatures, but
no implementations

© 2004-2007 SEOC - Lecture Note 04 18

Class Relationships

Dependency: objects of one class work briefly with objects of
another class

Association: objects of one class work with objects of another
class for some prolonged amount of time

Aggregation: one class owns but share a reference to objects of
other class

Composition: one class contains objects of another class

Inheritance (Generalization): one class is a type of another
class

© 2004-2007 SEOC - Lecture Note 04 19

Dependency and Association
Dependency between two
classes means that one class
uses, or has knowledge of,
another class (i.e., a
transient relationship)
Associations
• an attribute of an object is

an associated object
• a method relies on an

associated object
• an instance of one class must

know about the other in
order to perform its work

• Passing messages and
receiving responses

Associations may be
annotated with information:
Name, Multiplicity, Role
Name, Ends, Navigation

Employee Department

Is-member-of
1..* 1

Course
Lectures

Tutorials Room

Consistsof
1 1..*

Involves

1

1..*

areIn

1

1

lectureRoom

areIn
1 1

tutorialRoom

© 2004-2007 SEOC - Lecture Note 04 20

Aggregation
is a stronger version of association
is used to indicate that, as well as having attributes
of its own, an instance of one class may consist of, or
include, instances of another class
are associations in which one class belongs to a
collection Course

LectureNotes

1

1..*
ExamPaper

1

0..*

CaseStudies

1

0..*

Solutions
1 1

0..*

0..*

Examples

0..*

0..*

© 2004-2007 SEOC - Lecture Note 04 21

Composition
Compositions imply
coincident lifetime. A
coincident lifetime
means that when the
whole end of the
association is created
(deleted), the part
components are created
(deleted).

RequirementsSpecificationDocument

ProjectInformation

1

1
RequirementsSection

1

1..*

Requirements

requirementsNumber : Integer
requirementsDescription : String

1

1..*

Note that the java code implementation for an aggregation (composition)
relationship is exactly the same as the implementation for an association
relationship. It results in the introduction of an attribute.

© 2004-2007 SEOC - Lecture Note 04 22

Generalization (Inheritance)
An inheritance link indicating one class is a superclass
of the other, the subclass
• An object of a subclass to be used as a member of the

superclass
• The behavior of the two specific classes on receiving the

same message should be similar
Checking Generalizations: If class A is a
generalization of a class B, then “Every B is an A”

MobileDevice

batteryDuration : int

MobilePhone

standby : int

Laptop

operatingSystem : String

MP3Player

play() : void

Design by Contract. A subclass must keep to the contract of the superclass by
ensuring operations observe the pre and post conditions on the methods and that the
class invariant is maintained.
Suggested Readings
• B. Meyer. Applying `design by contract‘. IEEE Compute, 25(10):40-51, 1992.

© 2004-2007 SEOC - Lecture Note 04 23

Implementing Generalizations

Java: creating the subclass by extending the
superclass

Inheritance increases system coupling

Modifying the superclass methods may
require changes in many subclasses

Restrict inheritance to conceptual modeling

Avoid using inheritance when some other
association is more appropriate

© 2004-2007 SEOC - Lecture Note 04 24

More on Classes

Abstract Classes provide the definition, but
not the implementation
Interfaces are collections of operations
that have no corresponding method
implementations
• Safer than Abstract classes – avoid many problems

associated with multiple inheritance
• Java allows a class to implement any number of

interface, but a class inherit from only one regular
or abstract class

Templates – or parameterized classes –
allow us to postpone the decision as to which
classes a class will work with

© 2004-2007 SEOC - Lecture Note 04 25

Modeling by Class Diagrams

Class Diagrams (models)
• from a conceptual viewpoint, reflect the

requirements of a problem domain
• From a specification (or implementation)

viewpoint, reflect the intended design or
implementation, respectively, of a software system

Producing class diagrams involve the
following iterative activities:
• Find classes and associations (directly from the

use cases)
• Identify attributes and operations and allocate to

classes
• Identify generalization structures

© 2004-2007 SEOC - Lecture Note 04 26

How to build a class diagram
Design is driven by criterion of completeness either
of data or responsibility
• Data Driven Design identifies all the data and see it is

covered by some collection of objects of the classes of the
system

• Responsibility Driven Design identifies all the
responsibilities of the system and see they are covered by a
collection of objects of the classes of the system

Noun identification
• Identify noun phrases: look at the use cases and identify a

noun phrase. Do this systematically and do not eliminate
possibilities

• Eliminate inappropriate candidates: those which are
redundant, vague, outside system scope, an attribute of the
system, etc.

Validate the model…

© 2004-2007 SEOC - Lecture Note 04 27

Common Domain Modeling Mistakes

Overly specific noun-phrase analysis
Counter-intuitive or incomprehensible class
and association names
Assigning multiplicities to associations too
soon
Addressing implementation issues too early:
• Presuming a specific implementation strategy
• Committing to implementation constructs
• Tackling implementation issues

Optimizing for reuse before checking use
cases achieved

© 2004-2007 SEOC - Lecture Note 04 28

Class and Object Pitfalls

Confusing basic class relationships (i.e., is-a,
has-a, is-implemented-using)

Poor use of inheritance
• Violating encapsulation and/or increasing coupling
• Base classes do too much or too little
• Not preserving base class invariants
• Confusing interface inheritance with

implementation inheritance
• Using multiple inheritance to invert is-a

© 2004-2007 SEOC - Lecture Note 04 29

(Suggested) Readings
Readings

UML course textbook
• Chapter 4 on Class Diagram: Classes and Associations
• Chapter 5 on Class Diagram: Aggregation, Composition and

Generalization
• Chapter 6 on Class Diagram: More on Associations
• Chapter 7 on Class Diagram: Other Notations

P. Kruchten, H. Obbink, J. Stafford. The Past, Present and
Future of Software Architecture. IEEE Software,
March/April 2006.

Suggested Readings
I. Sommerville. Software Engineering, Eighth Edition,

Addison-Wesley 2007.
• Chapter 14 on Object-oriented design
B. Meyer. Applying `design by contract‘. IEEE Compute,

25(10):40-51, 1992.

© 2004-2007 SEOC - Lecture Note 04 30

Summary
Design is a complex matter

Design links requirements to construction, essential
to ensure traceability

Class Diagram Rationale

Classes

Class Relationships

Modeling by Class Diagrams

How to build a class diagram

Common domain modeling mistakes

Class and Object Pitfalls

