
Requirements Engineering

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk

© 2004-2007 SEOC - Lecture Note 02 2

10 Top Reasons for Not Doing Requirements

We don't need requirements,
we're using objects, java,
web...

The users don't know what
they want

We already know what the
users want

Who cares what the users
want?

We don't have time to do
requirements

It's too hard to do
requirements

My boss frowns when I write
requirements

The problem is too complex
to write requirements

It's easier to change the
system later than to do the
requirements up front

We have already started
writing code, and we don't
want to spoil it

© 2004-2007 SEOC - Lecture Note 02 3

Requirements Engineering Activities

Requirements
Elicitation

Requirements
Analysis

and Negotiation

Requirements
Documentation

Requirements
Validation

User needs,
domain

information,
existing system

information,
regulations,

standards, etc.

Requirements
Document

System
Specification

Agreed
Requirements

Main activities involved in Software Requirements engineering:
• Elicitation: Identify sources; Elicit requirements
• Analysis and Negotiation: Classify requirements; Model; Top-level

architecture; Allocate requirements to components; Negotiate requirements
• Documentation: Requirements Definition Doc; Software Requirements

Specification; Document Standards; Document Quality
• Validation: Reviews; Prototypes; Modeling; Test definition
• Management: Traceability; Attributes; Change/Evolution

The pattern, sequence and interaction of these activities is orchestrated by a
Requirements Engineering Process.
Readings

• I. Sommerville. Integrated Requirements Engineering: A Tutorial. IEEE
Software, January/February 2005, pp. 16-23.

Suggested Readings
• I. Sommerville, P. Sawyer. Requirements Engineering: A Good Practice Guide.

John Wiley & Sons, 1997.
• G. Kotonya, I. Sommerville. Requirements Engineering: Processes and

techniques. John Wiley & Sons, 1998.
• I. Sommerville. Software Engineering, Eighth Edition, Addison-Wesley 2007.

• Chapter 6 on Software Requirements.
• Chapter 7 on Requirements Engineering Processes.

© 2004-2007 SEOC - Lecture Note 02 4

Requirements Elicitation Activities

Application domain understanding
• Application domain knowledge is knowledge of the general

area where the system is applied

Problem understanding
• The details of the specific customer problem where the

system will be applied must be understood

Business understanding
• You must understand how systems interact and contribute to

overall business goals

Understanding the needs and constraints of
system stakeholders
• You must understand, in detail, the specific needs of people

who require system support in their work

© 2004-2007 SEOC - Lecture Note 02 5

Requirements Elicitation Techniques

Interviews with stakeholders
• Close/Open (Structured/Unstructured),

Facilitated Meetings (e.g., professional group work)
Scenarios
• Elicit the “usual” flow of work
• Are stories which explain how a system might be

used
• Expose possible system interactions and reveal

system facilities which may be required
Prototypes
• mock-up using paper, diagrams or software
Observations
• Observing “real world” work

Some requirements elicitation techniques find grounds in Ethnography - a
technique from the social sciences. Note that actual work processes often differ
from formal prescribed processes.

© 2004-2007 SEOC - Lecture Note 02 6

Requirements Analysis

Discovers problems, incompleteness and
inconsistencies in the elicited requirements

A problem checklist may be used to support
analysis

A Problem Checklist
• Premature design
• Combined requirements
• Unnecessary requirements
• Requirements ambiguity
• Requirements realism
• Requirements testability

Requirements Analysis involves: Classification, Conceptual Modeling,
Architectural Design and Requirements Allocation and Requirements Negotiation.
Requirements Analysis deals with large volume of requirements information,
detects and resolves conflicts, scopes the system and defines interfaces with the
environment, translates system requirements into software requirements and
provides feedback to the stakeholders (in order to resolve conflicts through the
negotiation process).
A Problem Checklist: Premature design, Combined requirements, Unnecessary
requirements, Use of non-standard hardware, Conformance with business goals,
Requirements ambiguity, Requirements realism, Requirements testability.

© 2004-2007 SEOC - Lecture Note 02 7

Non-functional Requirements

Non-functional requirements (e.g., safety,
security, usability, reliability, etc.) define
the overall qualities or attributes of the
resulting system

Constraints on the product being developed
and the development process

Warnings: unclear distinction between
non-functional and functional requirements

Readings
• J. Boegh, S. De Panfilis, B. Kitchenham, A. Pasquini. A Method for Software

Quality Planning, Control, and Evaluation. IEEE Software, March/April 1999,
pp. 69-77.

© 2004-2007 SEOC - Lecture Note 02 8

Other Activities

Constructing specifications
• System requirements definition: customer facing,

at system level
• Software Requirements Specification: developer

facing, at software level

Requirements validation
• define the acceptance test with stakeholders

Requirements Management
• Manage requirements and maintain traceability
• Requirements change because the environment

changes and there is a need to evolve

There are four main types of traceability links with respect to their process
relationships to requirements:
Forward from requirements. Responsibility for requirements achievement must
be assigned to system components, such that accountability is established and the
impact of requirements change can be evaluated.
Backward to requirements. Compliance of the system with requirements must be
verified, and gold-plating (designs for which no requirements exist) must be
avoided.
Forward to requirements. Changes in stakeholder needs, as well as in technical
assumptions, may require a radical reassessment of requirements relevance.
Backward from requirements. The contribution structures underlying
requirements are crucial in validating requirements, especially in highly political
settings.
Suggested Readings

• M. Jarke. Requirements Tracing. Communications of the ACM, Vol. 41, No.
12, December 1998.

VolBank - Volunteer Bank

© 2004-2007 SEOC - Lecture Note 02 10

VolBank: Requirements

1. To develop a system that will handle the
registration of volunteers and the
depositing of their time.

2. To handle recording of opportunities for
voluntary activity.

3. To match volunteers with people or
organizations that need their skills.

4. To generate reports and statistics on
volunteers, opportunities an time
deposited.

For each volunteer, the System has:
To record the details of volunteers, contact details, skills and needs
To record the time that each volunteer deposits in the system
To transfer from the web-server details of volunteers and the time they
are depositing.

For each organization, the system has:
1. To record details of member voluntary organizations
2. To record the needs of voluntary organizations
3. To record the needs of individuals (including volunteers) for help.
The system has:
1. To match volunteer with local opportunities
2. To match local opportunity with a team of volunteers
3. To record matches between volunteers and opportunities
4. To notify volunteers of a match
5. To notify organizations of a match
6. To Record if agreement is reached from a particular match.

© 2004-2007 SEOC - Lecture Note 02 11

VolBank: Elicitation
Goals (why the system is being developed)
• An high level goal is to increase the amount of volunteer effort

utilized by needy individuals and organizations
• Possible requirements in measurement and monitoring

Domain Knowledge
• Some specific requirements, e.g., Safety and Security

Stakeholders
• volunteers, organizations, system administrators, needy people,

operator, maintenance, manager

Operational Environment
• Probably constrained by software and hardware in the office

Organizational Environment
• legal issues of keeping personal data, safety issues in “matching”

Elicitation aims to identify (potential sources of) requirements.

© 2004-2007 SEOC - Lecture Note 02 12

VolBank: Examples of requirements

Volunteer identifies:
1. The need for security/assurance in contacting

organizations, …

Management identifies:
1. The number of hours volunteered per month

above a given baseline as the key metric

Operator identifies:
1. The need to change details when people move

home
2. The need to manage disputes when a volunteer is

unreliable, or does bad work

© 2004-2007 SEOC - Lecture Note 02 13

VolBank: Analysis and Classification

Functional Requirements
• The system allows a volunteer to be added to the

register of volunteers. The following data will be
recorded:...

Non-functional Requirements
• The system ensures confidentiality of personal

data and will not release it to a third party
• The system ensures the safety of all participants

© 2004-2007 SEOC - Lecture Note 02 14

VolBank: A Failed Match Scenario
Goal: to handle failure of a match

Context: the volunteer and organization have been
matched and a date for a preliminary meeting
established

Resources: time for volunteer and organization

Actors: volunteer, operator, organization

Episodes:
• The volunteer arrives sees the job to be done and decides

(s)he cannot do it
• Organization contacts operator to cancel the match and

reorganize

Exceptions: volunteer fails to show up

© 2004-2007 SEOC - Lecture Note 02 15

VolBank: Conceptual Modeling

Process of requirements engineering is usually
guided by a requirements method
Requirement methods are systematic ways of
producing system models
System models important bridges between the
analysis and the design process
Begin to identify classes of object and their
associations:
• volunteer, contact details, match, skills, organization, needs,

etc.
Start to consider some high level model of the
overall workflow for the process using modeling
tools

© 2004-2007 SEOC - Lecture Note 02 16

VolBank: Design and Allocation

How do we allocate requirements?
• The system shall ensure the safety of all participants?

Further analysis to identify principal threats:
• Safety of the volunteer from hazards at the work site
• Safety of the organizations from hazards of poor or

inadequate work
• Safety of people from volunteers with behavioural problems
• …

Design might allow us to allocate:
• 1 to an information sheet
• 2 to a rating component and procedures on allocating work
• 3 to external police register
• …

© 2004-2007 SEOC - Lecture Note 02 17

VolBank: Negotiation

Safety and Privacy requirements
• may be inconsistent or conflicting
• need to modify one or both
• Privacy: only authorized releases for safety

checks will be permitted and there is a procedure
for feeding back to the individual if a check fails.

Some requirements may be achievable but
only at great effort
• Attempt to downscale
• Prioritize
• It may be too much effort to implement a fault

reporting system in the first release of the
system

© 2004-2007 SEOC - Lecture Note 02 18

How to organize requirements?

Software Requirements Specification (SRS)
• The SRS document is a structured documents that containing

the identified requirements

The VOLERE Template identifies the following
SRS main parts:
• PROJECT DRIVERS (e.g., The Purpose of the Product,

Stakeholders, etc.)
• PROJECT CONSTRAINTS (e.g., Costs)
• FUNCTIONAL REQUIREMENTS
• NON-FUNCTIONAL REQUIREMENTS (e.g., Usability,

Performance, Operational, Maintainability, Portability,
Safety, Reliability, Security, Cultural, etc.)

• PROJECT ISSUES (e.g., Open Issues, Risks, Evolution, etc.)

You may want to use the VOLERE template (tailored for your purposes) as support
for your practical work. The VOLERE requirements shell provides a guide for
writing requirements.
Readings

•J. Robertson, S. Robertson. VOLERE: Requirements Specification
Template. Edition 10.1, Atlantic Systems Guild.

Suggested Readings
•S. Robertson, J. Robertson. Mastering the Requirements Process. Addison-
Wesley, 1999.

© 2004-2007 SEOC - Lecture Note 02 19

Requirements Engineering Practices

Examples of Requirements Engineering
practices are:

Define a standard document structure
• For example, tailor a standard requirements

specification template to your needs

Identify requirements uniquely
• For example, number each requirements specified

in the requirements documentation

Suggested Readings
•I. Sommerville, P. Sawyer. Requirements Engineering: A Good Practice
Guide. John Wiley & Sons, 1997.

© 2004-2007 SEOC - Lecture Note 02 20

Readings

Requirements Specification Template
• J. Robertson, S. Robertson. VOLERE: Requirements

Specification Template. Edition 10.1, Atlantic
Systems Guild.

I. Sommerville. Integrated Requirements
Engineering: A Tutorial. IEEE Software,
January/February 2005, pp. 16-23.
J. Boegh, S. De Panfilis, B. Kitchenham, A.
Pasquini. A Method for Software Quality
Planning, Control, and Evaluation. IEEE
Software, March/April 1999, pp. 69-77.

© 2004-2007 SEOC - Lecture Note 02 21

Suggested Readings

I. Sommerville, P. Sawyer. Requirements
Engineering: A Good Practice Guide. John Wiley &
Sons, 1997.
G. Kotonya, I. Sommerville. Requirements
Engineering: Processes and techniques. John Wiley
& Sons, 1998.
M. Jarke. Requirements Tracing. Communications of
the ACM, Vol. 41, No. 12, December 1998.
S. Robertson, J. Robertson. Mastering the
Requirements Process. Addison-Wesley, 1999.
I. Sommerville. Software Engineering, Eighth
Edition, Addison-Wesley 2007.
• Chapter 6 on Software Requirements
• Chapter 7 on Requirements Engineering Processes

© 2004-2007 SEOC - Lecture Note 02 22

Summary

Requirements engineering
• Involves diverse activities
• Supports the construction of quality systems

Issues are very wide ranging
• Poor requirements lead to very poor systems
• Negotiating agreement between all the

stakeholders is hard

In some application areas it may be possible
to use a more formal notation to capture
some aspects of the system (e.g., control
systems, compilers, …)

