
Software Engineering 
with Objects and Components

Massimo Felici

JCMB-1402 0131 650 5899

1BP-G04 0131 650 4408

mfelici@inf.ed.ac.uk



© 2004-2007 SEOC - Lecture Note 01 2

Course Organization

SEOC course webpage

http://www.inf.ed.ac.uk/teaching/courses/seoc/

Mailing List

seoc-students@inf.ed.ac.uk

Newsgroup

eduni.inf.course.seoc1

SEOC CVS repositories



© 2004-2007 SEOC - Lecture Note 01 3

Course Organization

Course Textbook

UML, Second Edition, by Simon Bennet, John 
Skelton and Ken Lunn, Schaum's Outline 
Series, McGraw-Hill, 2005 

Course Resources
Lecture Notes and References

Software
ArgoUML, Eclipse and Java



© 2004-2007 SEOC - Lecture Note 01 4

Course Organization

Tutorials begin in week 3
• Frequency: once a week
• Maximum 12 people per tutorial group

Coursework
• in small teams (approx 3-4 people)
• two deliverables equally weighted
• Deadlines

• 1st deliverable: Monday, 29th October
• 2nd deliverable: Friday, 30th November

Assessment
• 25% coursework; 75% degree examination



© 2004-2007 SEOC - Lecture Note 01 5

What is Software Engineering?

Software Engineering is an engineering 
discipline that is concerned with all aspects 
of software production from the early stages 
of system specification to maintaining the 
system after it has gone into use.

This lecture provides a very brief introduction to Software Engineering. The SEOC 
course focuses on engineering software systems using Objects and Components. 
The main learning objectives of the course involve the acquisition of software 
engineering knowledge and ability to design, assess and implement object-oriented 
systems. The course uses UML as modelling language. The course organization 
embeds some general software engineering principles and practices. 
Readings

• B. Meyer. Software Engineering in the Academy. IEEE Computer, May 2001, 
pp. 28-35. It provides a discussion on software engineering education. 

Suggested Readings
For an introduction to various aspects of Software Engineering refer to

• I. Sommerville. Software Engineering, Eighth Edition, Addison-Wesley 2007. 
In particular, Chapter 1 for a general account of Software Engineering.

• SWEBOK - Guide to the Software Engineering Body of Knowledge. 2004 
Version, IEEE.



© 2004-2007 SEOC - Lecture Note 01 6

Some Software Engineering Aspects

Software Processes

Software Process Models

Software Engineering Methods

Costs

Software Attributes

Tools

Professional and Ethical Responsibilities

Software Engineering is concerned with all aspects of software production. The main objective is to 
support software production in order to deliver software that is “fit for purpose”, e.g., good enough 
(functionally, non-functionally), meets constraints (e.g., time and financial) of the environment, law, 
ethics and work practices. For instance, some software engineering aspects are:
Software Process: the set of activities and associated results (e.g., software specification, software 
development, software validation and software evolution) that produce a software product. Software 
essential activities are:
• Software Requirements: gaining an accurate idea of what the users of the system want it to do.
• Software Design: the design of a system to meet the requirements.
• Software Construction: the realisation of the design as a program.
• Software Testing: the process of checking the code meets the design.
• Software Configuration, Operation and Maintenance: major cost in the lifetime of systems. 
Software Process Model: An overview of the software activities and results’ organization. 
Software Engineering processes (e.g., waterfall, spiral, etc.) arrange (deploy effort) these activities 
differently. The SEOC organization, to a certain extent, embeds some basic principles underlying 
different software engineering processes. 
Readings
Among the various process, the Rational Unified Process (RUP) is the most relevant one. It 
“provides a guide for how to effectively use the Unified Modeling Language (UML)” .

• Rational Unified Process: Best Practice for Software Development Teams: Rational Software 
White Paper, TP026, Rev 11/01.

Suggested Readings
• Chapter 4 on Software Processes in Summerville’s book.



© 2004-2007 SEOC - Lecture Note 01 7

Why Software Fails?

Complex causes (interactions) trigger 
software failures

Software fails in context

Some issues related to software engineering
• Misunderstood requirements
• Design issues
• Mistakes in specification, design or implementation
• Operational issues

Faults, Errors and Failures

Unfortunately, software still fails too often. Software fails in complex manners. 
Although the course stresses the importance of software designs and models, it is 
often difficult to understand how software engineering aspects (e.g., design, 
implementation, etc.) relate to or address software failures. Software failures may 
have dependability (e.g., safety, reliability, etc.) as well as financial implications.
Readings

• R.N. Charette. Why Software Fails. IEEE Spectrum, pp. 42-49, September 
2005.

Suggested Readings
• Chapter 3 on Critical Systems in Sommerville’s book.



© 2004-2007 SEOC - Lecture Note 01 8

Faults, Errors and Failures

Some definitions:
• Fault – The adjudged or hypothesized cause of a 

an error is called a fault. A fault is active when it 
causes an error, otherwise it is dormant.

• Error – The deviation from a correct service state 
is called an error. An error is the part of the total 
state of the system that may lead to its 
subsequent service failure.

• Failure – A failure is an event that occurs when 
the delivered service deviates from correct 
service.

Warnings: different understandings of faults, 
errors and failures.

An important aspect is to understand how faults, errors and failures relate each 
other. Research and practice in engineering safety-critical systems emphasize the 
underlying mechanisms of software failures. Note that understanding these concepts 
(i.e., faults, errors and failures) in practice often requires expertise within specific 
application domains, which might have different interpretations of them.
Suggested Readings

• A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts and 
Taxonomy of Dependable and Secure Computing. IEEE Transactions on 
Dependable and Secure Computing 1(1):11-33, January-March 2004.



© 2004-2007 SEOC - Lecture Note 01 9

Some “Famous” Software Failures

Patriot Missile failure
• Inaccurate calculation of the time since boot due to 

computer arithmetic errors.
• Coding errors may effect overall software system behaviour.

The Ariane 5 Launcher failure
• the complete loss of guidance and altitude information 37 

seconds after start of the main engine ignition sequence.
• The loss of information was due to specification and design 

errors in the software of the inertial reference system.
• The software that failed was reused from the Ariane 4 

launch vehicle. The computation that resulted in overflow was 
not used by Ariane 5. 

The London Ambulance fiasco
Therac 25 and other medical device failures
• (Software) Reliability is different than (System) Safety

Readings
• B. Nuseibeh. Ariane 5: Who Dunnit? IEEE Software, pp. 15-16, May/June 

1997.
• J.-M. Jézéquel, B. Meyer. Design by Contract: The Lessons of Ariane. IEEE 

Computer, pp. 129-130, January 1997.
• M. Grottke, K.S. Trivedi. Fighting Bugs: Remove, Retry, Replicate, and 

Rejuvenate. IEEE Computer, pp. 107-109, February 2007.
Suggested Readings

• N.G. Leveson, C.S. Turner. An investigation of the Therac-25 accidents. IEEE 
Computer 26(7): 18-41, Jul 1993.

• D.R. Wallace, D.R. Kuhn. Lessons from 342 Medical Device Failures. In 
Proceedings of HASE 1999, pp. 123-131. 



© 2004-2007 SEOC - Lecture Note 01 10

An Example: The Patriot Missile Failure

Accident Scenario: On February 25, 1991, 
during the Gulf War, an American Patriot 
Missile battery in Dharan, Saudi Arabia, failed 
to track and intercept an incoming Iraqi Scud 
missile. The Scud struck an American Army 
barracks, killing 28 soldiers and injuring 
around 100 other people.

A report of the General Accounting office, GAO/IMTEC-92-26, entitled Patriot Missile Defense: 
Software Problem Led to System Failure at Dhahran, Saudi Arabia, reported on the cause of the 
failure. 



© 2004-2007 SEOC - Lecture Note 01 11

The Patriot Missile continued…

Fault – Inaccurate calculation of the time since 
boot due to computer arithmetic errors. 
Error – The small chopping error, when multiplied 
by the large number giving the time in tenths of a 
second, lead to a significant error of 0.34 
seconds. 
Failure – A Scud travels at about 1,676 meters per 
second, and so travels more than 500 meters in this 
time. This was far enough that the incoming Scud 
was outside the range gate that the Patriot 
tracked. 

Fault – The time in tenths of second as measured by the system's internal clock was 
multiplied by 1/10 to produce the time in seconds. This calculation was performed 
using a 24 bit fixed point register. In particular, the value 1/10, which has a non-
terminating binary expansion, was chopped at 24 bits after the radix point. 
Error – Indeed, the Patriot battery had been up around 100 hours, and an easy 
calculation shows that the resulting time error due to the magnified chopping error 
was about 0.34 seconds. The binary expansion of 1/10 is 
0.0001100110011001100110011001100…
The 24 bit register in the Patriot stored instead 
0.00011001100110011001100 
introducing an error of 
0.0000000000000000000000011001100... binary, or about 0.000000095 decimal. 
Multiplying by the number of tenths of a second in 100 hours gives 
0.000000095×100×60×60×10=0.34. 
Ironically, the fact that the bad time calculation had been improved in some parts of 
the code, but not all, contributed to the problem, since it meant that the inaccuracies 
did not cancel.



© 2004-2007 SEOC - Lecture Note 01 12

The Patriot Missile …conclusions

Identifying coding errors is very hard 
• seemingly insignificant errors result in major 

changes in behaviour

Original fix suggested a change in 
procedures
• reboot every 30 hours – impractical in operation

Patriot is atypical
• coding bugs rarely cause accidents alone

Maintenance failure
• failure of coding standards and traceability



© 2004-2007 SEOC - Lecture Note 01 13

Supporting Software Engineering Practices

UML provides a range of graphical notations
that capture various aspects of the 
engineering process
Provides a common notation for various 
different facets of systems
Provides the basis for a range of 
consistency checks, validation and 
verification procedures
Provides a common set of languages and 
notations that are the basis for creating 
tools

Readings
• UML course textbook

• Chapter 1 on the Introduction to the Case Studies.
• Chapter 2 on the Background to UML.

Suggested Readings
• G. Cernosek, E. Naiburg. The Value of Modeling. Rational Software, Copyright 
IBM Corporation 2004. This paper provides a brief technical discussion on 
software modeling.



© 2004-2007 SEOC - Lecture Note 01 14

Some UML diagrams

Use Case Diagrams

Class Diagrams

Interaction Diagrams
• Sequence and Communication Diagrams

Activity Diagrams

State Machines

Use Case Diagrams
• Used to support requirements capture and analysis;show the actors’ 

involvement in system activities
Class Diagrams

• Capture the static structure of systems; associations between classes
Interaction Diagrams

• Capture how objects interact to achieve a goal
Activity Diagrams

• Capture the workflow in a situation
State Machines:

• Capture state change in objects of the system
Other Diagrams: Component and Deployment Diagrams



© 2004-2007 SEOC - Lecture Note 01 15

Readings

UML course textbook
• Chapter 1 on the Introduction to the Case Studies.
• Chapter 2 on the Background to UML

B. Meyer. Software Engineering in the Academy. IEEE Computer, 
May 2001, pp. 28-35.
R.N. Charette. Why Software Fails. IEEE Spectrum, pp. 42-49, 
September 2005.
B. Nuseibeh. Ariane 5: Who Dunnit? IEEE Software, pp. 15-16, 
May/June 1997.
J.-M. Jézéquel, B. Meyer. Design by Contract: The Lessons of 
Ariane. IEEE Computer, pp. 129-130, January 1997.
M. Grottke, K.S. Trivedi. Fighting Bugs: Remove, Retry, 
Replicate, and Rejuvenate. IEEE Computer, pp. 107-109, 
February 2007.
Rational Unified Process: Best Practice for Software 
Development Teams: Rational Software White Paper, TP026, Rev 
11/01.



© 2004-2007 SEOC - Lecture Note 01 16

Suggested Readings

I. Sommerville. Software Engineering, Eighth Edition, Addison-
Wesley 2007.
• Chapter 1 for a general account of Software Engineering
• Chapter 3 on Critical Systems
• Chapter 4 on Software Processes

SWEBOK - Guide to the Software Engineering Body of Knowledge. 
2004 Version, IEEE.
A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts 
and Taxonomy of Dependable and Secure Computing. IEEE 
Transactions on Dependable and Secure Computing 1(1):11-33, 
January-March 2004.
N.G. Leveson, C.S. Turner. An investigation of the Therac-25 
accidents. IEEE Computer 26(7): 18-41, Jul 1993.
D.R. Wallace, D.R. Kuhn. Lessons from 342 Medical Device Failures. 
In Proceedings of HASE 1999, pp. 123-131. 
G. Cernosek, E. Naiburg. The Value of Modeling. Rational Software, 
Copyright IBM Corporation 2004. 



© 2004-2007 SEOC - Lecture Note 01 17

Summary

SEOC organization

An introduction to Software Engineering

Why Software Fails

Faults, Errors and Failures

Examples of Software Failures

An Outline of some UML diagrams

Readings and Suggested Readings


