
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 6 9

n increasing number of software process and product standards em-
phasize the need for measurement. ISO 9001, for example, provides guid-
ance for monitoring and controlling product and process characteristics
during both production and installation.1 However, standards provide

little guidance as to what exactly users should measure and how to use the results
to support the development of high-quality software.

Furthermore, measurement cannot be defined independent of context. A met-
ric set judged valid on one project may lead to poor quality or high development
costs when applied to another project.2 When quality is measured, several factors
come into play, including product characteristics (such as size), process maturity
level of the company developing the software product, its development environ-
ment (such as the design methodology and CASE tools used), and the development
team’s skill and experience.3

A

Researcher’s
CORNER

S quid i s a metho d and a too l fo r qua l i t y assurance and
contro l that a l low s a so f t ware deve lopment organizat ion to
p lan and contro l pro duc t qua l i t y dur ing deve lopment. The
Te lesc ience so f t ware deve lopment pro jec t used i t to bu i ld a
remote moni tor ing and contro l sys tem based in Antarc t i ca .

Jørgen Bøegh, Danish Electronics, Light, and Acoustics

Stefano Depanfilis, Engineering Ingegneria Informatica

Barbara Kitchenham, Keele University

Alberto Pasquini, ENEA

A Method for
Software Quality
Planning, Control,
and Evaluation

.

Defining measurement in the specific context of
an organization means using defined data collection
rules and metric sets. Comparison of measurement
values should be limited to projects with similar
characteristics. This suggests the need for a method
to control, assess, and predict product and process
quality, which can be tailored to an individual orga-
nization’s needs and based on its own databases.

The Software Quality in Development project,
supported by the European Commission’s Esprit pro-
gram, has developed Squid to fill this need. Squid is
a method for quality assurance and control, and in-
cludes a toolset to support application of the
method. Using Squid, a software development or-
ganization can use measurement to

♦ plan and control product qualities during
development;

♦ learn in a deeper and more systematic way
about the software process and product, and feed
the appropriate experience back into current and
future projects; and

♦ evaluate final product qualities.
We have applied Squid to a software develop-

ment project called Telescience (see the boxed text,
“The Telescience Application”). This project aims to
automate a scientific station in Antarctica, to mon-
itor and control scientific experiments remotely dur-
ing the Antarctic winter.

The Squid Approach to
Quality

Squid defines quality as the operational behav-
ior of a product required by its users. This is consis-
tent with the standard approach to quality model-
ing taken by ISO 9126,4 which defines quality as a set
of product characteristics. Characteristics that govern
how the product works in its environment are called
external quality characteristics, which include, for ex-
ample, usability and reliability. Characteristics related
to how the product was developed are called internal
quality characteristics, and include, for example,
structural complexity, size, test coverage, and fault
rates. Examples and descriptions of these charac-
teristics can be found elsewhere.4,5

The Squid approach proposes defining product
quality requirements by establishing targets for the
external quality characteristics. This approach then
proposes pursuing those targets during develop-
ment by defining and monitoring targets for inter-
nal quality characteristics. This can be done using
conventional software measures of size, fault rates,
change rates, structure, test coverage, and so on,
taken early in product development.

Squid helps in establishing relationships be-
tween internal and external quality characteristics,
using experience from similar past software devel-

7 0 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9

T H E T E L E S C I E N C E A P P L I C A T I O N
The Telescience Project was launched in 1993 as part of the

Italian National Antarctic Research Program. Its aim is to develop

an advanced supervision and telecontrol system to remotely per-

form experimental activities in Antarctica during the austral win-

ter. The Squid method and toolset have been used to develop

the software used in two of the Telescience systems: the control

software of the Electric Power Supply and Distribution System,

and the software of the Remote Man–Machine Interface.

The Electric Power Supply and
Distribution System

The Electric Power Supply and Distribution System is located

at the Italian base in Antarctica. This subsystem ensures that elec-

tricity produced by the on-site diesel generators is available to

the equipment, scientific instruments, and systems running dur-

ing the winter in Antarctica. The experimental activities there are

intended to run unmanned for eight months, and this system

must guarantee the power supply without interruptions. The sys-

tem has severe requirements for reliability, availability, maintain-

ability, and fault tolerance capacity. The real-time control soft-

ware is duplicated. If the software fails catastrophically in both

versions of the power supply subsystem, a back-up battery power

system can run for one hour to provide the required energy.

The Remote Man–Machine Interface
System

The main goal of the Remote Man–Machine Interface system

(located in Italy) is to guarantee that scientists and operators can

perform scientific activities and remotely control the base func-

tioning during the austral winter. This system will permit scien-

tists to remotely program, schedule, and control experiments.

The system will also support the remote control of the station

and its instruments, and will simulate environmental and oper-

ating conditions for training purposes.

Researcher’s
CORNER

.

opment projects. This past expe-
rience is also used to assess the
feasibility of quality requirements
before starting the project, and to
identify and set targets for inter-
nal quality characteristics. Past
experience must be stored in a
consistent way to allow compa-
rability across different projects.
The Squid Data Model and
Quality Process provide a rigor-
ous and organized method for
identifying, defining, collating,
and comparing quality measures.

The Squid Data
Model

Development processes vary from company to
company, and even a single company may com-
monly use several different development models.
These differences limit the possibility of using met-
ric sets across different projects. For example, it is
not meaningful to compare the number of lines of
code developed using structured versus object-
oriented techniques. Process differences also affect
the relation between measures and quality charac-
teristics. For example, the influence of “size” (mea-
sured as LOC) on software maintainability differs for
software developed in an OO development process
versus a Waterfall one.

An organization using Squid specifies the pro-
ject objects (deliverables, milestones, modules, and
so on) produced by the development process it uses.
Project objects are the elements on which mea-
surements will be taken. Squid requires mapping
quality requirements onto quality characteristics
and hence onto quality attributes (that is, measur-
able properties) in the framework of a quality model
like that proposed in ISO 9126. Quality requirements
then serve as a set of targets for the external qual-
ity characteristics. Quality models also identify in-
ternal quality characteristics that influence the ex-
ternal ones. The organization then monitors and
controls internal quality characteristics through pro-
ject measures to achieve quality requirements.

Representing the development process
Representing the development process in the

data model characterizes the measures to be taken.
The Squid data model identifies the essential char-

acteristics of the development process such as the
type of development model and the language
adopted. Squid also models project objects, classi-
fied as deliverables, development activities, or re-
view points:

♦ deliverables (such as specifications and code)
are produced during the life of a project,

♦ activities produce deliverables, and
♦ review points are control intervals used in a par-

ticular development model.
Quality measures are taken of the deliverables at

the specified review points.

Representing the quality model
Squid specifies a quality model in terms of qual-

ity characteristics, which are refined until they are
directly measurable; they are then referred to as
quality attributes. Quality characteristics and attrib-
utes can be internal or external; the user identifies
how internal characteristics influence external ones
by linking them in the data model. Figure 1 shows
two related quality characteristics and how they are
refined in the quality model.

Except for extremely simple projects, different
parts of a software product usually have very dif-
ferent behavioral requirements. For example, the in-
terface component has high usability requirements,
whereas the database component has high integrity
requirements. Squid distinguishes such different
parts using the concept of a product portion. A sin-
gle product comprises a set of product portions; dif-
ferent product portions have different quality re-
quirements. This can help reduce conflict among

M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 7 1

Researcher’s
CORNER

Internal quality
characteristc

Internal quality
characteristc

Internal quality
characteristc

Internal quality
attribute

Internal quality
characteristc

Internal quality
attribute

External quality
characteristc

External quality
characteristc

External quality
characteristc

External quality
attribute

External quality
characteristc

External quality
attribute

Internal quality
characteristc

Link

Internal quality
attribute

Figure 1. Possible refinement of the quality characteristics Internal and External

Maintainability in the Squid quality model.

.

differing quality requirements. Whereas it may be
impossible to deliver extremely high operational re-
quirements in many different and sometimes con-
flicting dimensions for a product as a whole, it may
be feasible to deliver stringent quality requirements
for the individual product portions that genuinely
require them.

Representing measures
The measures collected through Squid can be ac-

tuals, estimates, or targets. An actual is the current
value measured for a specific quality attribute. An
estimate can be obtained from past data or through
the Squid toolset’s estimation facilities. Target val-
ues are specified during the quality specification
phase. Measures can be expressed in different units;
for example, lines of code is a product code length
unit, elapsed days is a project duration unit, and
working years is a personnel experience unit.

The Squid user defines how to take measure-
ments in counting rules, which clarify and regulate
all the conditions that could affect the measures’ob-
jectivity. For example, the measure of program
length can be collected as lines of code, but a count-
ing rule must confirm at what development stage
the measure is to be taken. Counting rules ensure
that measures are repeatable and are comparable
with those of the historical database.

Integrating components of the
Squid data model

All internal and external attributes belonging
to a specified quality model must be allocated to
the project object types belonging to a specified

development process and asso-
ciated to units and counting rules
(project measures) in the Squid
data model. Thus, the attribute
“structural complexity” in the
quality model must be associ-
ated with an appropriate project
object type in the development
process model—for example, a
module in a Waterfall develop-
ment model. Figure 2 shows the
resulting organization of the
Squid data model.

The Squid Quality
Process

The Squid quality process includes quality speci-
fication, planning, control, and evaluation. Squid pro-
vides user interaction and support in several ways.

Quality specification
Quality specification means establishing the

software product’s quality requirements. There are
three main activities involved:

♦ Select the quality model. Specifying the qual-
ity requirements takes place within the framework
of a specific quality model. An organization using
the Squid approach needs to define the quality
models used to develop its software products—for
example, an international standard like ISO 9126 or
a company-specific model. When starting a new
project, the organization must determine which of
the available quality models and development
processes should apply to the current project.

♦ Identify product portions, quality requirements,
and targets. The product being developed must be
defined in terms of a set of independent product
portions, that is, parts of a software product with
different quality requirements. Each operational re-
quirement is then associated with the product por-
tion to which it applies. The Squid toolset supports
the association of each requirement with a quality
characteristic in accordance with the selected qual-
ity model. Once a match is made between a quality
characteristic and a requirement, the toolset iden-
tifies one or more external attributes, derived from
the quality model, on which targets can be set.

♦ Perform feasibility analysis. Squid helps users
evaluate the feasibility of the external attribute tar-
gets, based on comparing achievement of similar

7 2 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9

Project object
• Activities
• Review points
• Deliverables

Project portion

Comprises

Evaluated by
Value

• Target
• Actual
• Estimates

Quality requirement

Quantified by

Provides

Experience base
• Similar projects

Defines

Refined in

Measure
• Internal
• External

Quality characteristics

Qualifies

• Internal
• External

Figure 2. Simplified representation of the Squid data model.

Researcher’s
CORNER

.

past projects with the targets of the current one.
The toolset analyzes the historical database look-
ing for similar past projects; it judges the level of
similarity by examining the development process
used for past projects and their external attribute
targets. The user can participate by introducing
search constraints and removing certain projects
from consideration. Squid then analyzes the actual

values of the external attributes achieved by the se-
lected past projects and compares these with the
new product’s target values. If the actual values dif-
fer from the required values, the normal develop-
ment process may not be able to deliver a product
that meets the stated quality requirements. Of
course, this feature requires a well-populated his-
torical database.

M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 7 3

Squid is not the only quality methodology, nor is it unique in

suggesting the use of measures to assist software development.

Process Improvement Methodologies
Process improvement methodologies such as CMM,1 ISO

9001, and SPICE2 identify the features essential to good software

development. They do not define a specific development process

but instead guide software producers in defining their methods

and implementing appropriate procedures to manage software

development. Their goal is to improve the development

process—they do not claim to improve individual products ex-

cept as a by-product of better processes.

These methodologies advocate the use of measurement to

improve project and quality management. Squid complements

them by providing a framework within which quality measures

can be stored, analyzed, and used constructively to assist soft-

ware development.

Metrics Methodologies
Of the several metrics methodologies in current use, one of

the most widely known and applicable to quality is the Goal-

Question-Metric paradigm.3 GQM provides a means of deriving

a measurement program from a statement of the business goals

to be achieved. Once the program goals are stated, they are used

to generate questions that the measurement program must ad-

dress. The questions enable the user to identify the metrics

needed to answer the questions. GQM is a high-level framework

that does not address specific software engineering issues.

Within this generic framework software developers must spec-

ify and document their measurement program.

Product Quality Methodologies
Product quality models include ISO 9126 and Euromethod.4

ISO 9126 defines a generic quality model and various support-

ing guidelines. Squid supports using ISO 9126 exactly as speci-

fied in the standard. However, Squid’s flexible quality modeling

facilities mean that a user can adapt the ISO quality model or

use any other model appropriate for the type of applications the

organization produces. ISO 9126 and other quality models rec-

ommend quality specification and evaluation actions but do not

specify how they should be performed. Squid provides a proce-

dure and a toolset for undertaking the quality actions recom-

mended in the standard.

In addition, Squid’s rigorous approach to measurement en-

sures full definition of measures. The user specifies the factors

(counting rules, project objects, and product portions) needed

to ensure that data is reliable and comparable. This forms the

basis for feasibility analysis, quality specification, and quality

planning. In addition, Squid extends the ISO 9126 philosophy to

quality planning and control.

Euromethod approaches software quality through identifica-

tion and control of product deliverables and intermediate deliv-

erables. Euromethod is not itself a measurement-oriented ap-

proach. Thus, we see Squid and Euromethod as supporting

technologies since Euromethod defines the product deliverables

and Squid models them in order to associate measures with them.

Squid has some similarities with other quality and measure-

ment-based technologies, but its specific product quality focus

differentiates it from other methodologies. Squid compels its

users to define their development process, quality models, and

measures. It is, therefore, supported by process initiatives such

as CMM and ISO 9001 that are forcing organizations to adopt

better-defined development standards and procedures.

REFERENCES
1. M.C. Paulk et al., “Capability Maturity Model, Version 1.1,” IEEE

Software, July 1993, pp. 18-27.

2. T.P. Rout, “SPICE: A Framework for Software Process Assessment,”
Software Process—Improvement and Practice, pilot issue, 1995, pp.
57-66.

3. V.R. Basili and H.D. Rombach,“The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans. Software
Eng., Vol. SE-14, No. 6, June 1988, pp. 758-773.

4. M. Gibbons, C. Mackie, and M. Pfeiffer, “Opportunities Deriving from
the Combined Use of Euromethod and SPICE,” Software Process
Improvement and Practice, Vol. 1, No. 2, 1995, pp. 115-135.

R E L A T I O N S H I P W I T H O T H E R M E T H O D O L O G I E S

Researcher’s
CORNER

.

Quality planning
Quality planning involves deciding on a suitable

development process and setting target values for
internal attributes.

♦ Select the development process for each product
portion. Since product portions have different quality
requirements, the development team may need to
adopt different processes to implement them.

♦ Assign target values to internal quality attrib-
utes. Quantitative targets are set for the internal
quality attributes identified in the quality model.
Attributes are then associated with intermediate ac-
tivities and deliverables (project objects), against
which progress will be monitored and controlled.
The Squid toolset helps users assign targets to in-
ternal measures by allowing them to view the soft-
ware quality attribute targets achieved on similar
past projects.

Quality control
Squid supports monitoring progress throughout

development using internal software measures as-
sociated with deliverables and activities related to
each major review point in development.6 Quality
control activities include the following:

♦ Identify deviations by comparing target values
with actual values of the internal quality attributes. At
each project review point, when certain quality at-
tributes have been measured, the current quality
status of the project can be assessed. This involves
comparing each internal quality attribute with its
planned target and identifying any significant de-
viations.

♦ Identify software components with unusual
attribute values. These components should be

analyzed more carefully to ensure early identifica-
tion of problem areas. The Squid toolset automates
the detection of anomalous components to iden-
tify project objects with unusual combinations of
internal attribute values.

Quality evaluation
In Squid, quality evaluation assures that a prod-

uct satisfies its specified requirements. The devel-
opment team can also analyze the quality results of
a project to provide feedback for the development
process. Squid provides a basic evaluation mecha-
nism based on

♦ measuring the actual values of the external at-
tributes for each product portion,

♦ comparing each actual value with its target
value, and

♦ reporting quality shortfalls.
Figure 3 shows the sequence of the Squid qual-

ity process activities and their main relation to the
Squid database.

Application of Squid to
Telescience Software

The Squid approach is being used by the
Antarctica Telescience project for development of
the Electric Power Supply and Distribution System
and the Remote Man-Machine Interface. The qual-
ity specification and quality planning activities of
these two systems have been successfully com-
pleted, and quality control is in progress. We report
here the experiences and problems encountered
during these activities.

Quality specification
Using the Squid approach, establishing the qual-

ity requirements for the Telescience project involved
three steps.

Select the quality model
The project team started by reviewing the ISO

9126 quality model. This standard specifies six qual-
ity characteristics, but it is unrealistic to assume that
a single set of quality characteristics is necessary
and sufficient to describe the quality requirements
for every project. In the case of the Telescience pro-
ject, the ISO characteristics were not exactly those
that best described the systems.

The project team therefore defined a specific qual-
ity model, modifying and integrating that proposed

7 4 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9

Quality evaluation Quality specification

Quality monitoring Quality planning

Configuration

Data collation

Squid
database

Figure 3. Quality process activities and their relation to the Squid

database.

Researcher’s
CORNER

.

in ISO 9126, that identified the
quality characteristics and the
associated external attributes.
Table 1 shows the quality require-
ments and targets for one prod-
uct portion, the Electric Power
Supply subsystem. The first three
columns show the set of external
characteristics and external at-
tributes associated with the qual-
ity characteristic Maintainability.
Each element of the quality
model and the counting rules to
be used for each attribute were
defined in the database.

Table 2 shows the targets for
each internal attribute of
Maintainability for the Electric
Power Supply subsystem.

We found the Squid method
to be very sensitive to the qual-
ity model identified, and espe-
cially to the characteristics of the
external and internal attributes
selected. Because Squid is based
on learning from the experience
of similar past projects, attributes
must be as robust as possible
against variation of the project
characteristics; that is, they must
remain significant even across
different projects. A project-
specific attribute will not have
significant value for other pro-
jects, even if they are only slightly
different. The quality character-
istic “product size,” for example,
can be expressed in terms of at-
tributes such as code size or
function points. The first is sen-
sitive to changes in the imple-
mentation language while the
second is not, which means the
second attribute is significant
even across projects that use dif-
ferent languages.

Identifying quality attributes
with such characteristics was not
easy for the Telescience project, which is a real-time
control system used under unusual operating con-
ditions. This system has peculiar requirements for
reliability, maintainability, and interacting with the

environment; some of these were mapped into ap-
plication-specific external attributes. For example,
the whole Antarctica station relies on the energy
produced under the control of the Electric Power

M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 7 5

Researcher’s
CORNER

Table 1
Quality Requirements and Targets for

Electric Power Supply Subsystem

External Quality Characteristics External Unit Upper
Attributes Target

Maintainability Corrective Recovery time Average number of 1

maintainability hours required for

system recovery (*)

Average number of 48

hours required for

software recovery (**)

Fault Average number of 1.2

containment modules modified

efficiency per error fix

Adaptive Modification Productivity ratio 1.5

maintainability productivity

* System recovery refers to failures affecting the system’s ability to produce power.

** Software recovery refers to failures affecting the software’s ability to control the power production.

Table 2
Targets for Internal Attributes for

Electric Power Supply Subsystem

Internal Quality Characteristics Internal Lower Upper
Attributes Target Target

Value Value

Maintainability Modularity Cohesion Average number – 1.2
of modules changed
per fault corrected
during integration
testing

Coupling Modules calling a – 10
module (fan-in)
Modules called by a – 30
module (fan-out)
Average common – 5
data access

Simplicity Average module size – 200
Number of modules – 100
Cyclomatic complexity – 60

Analyzability Document Conformance to – 8
readability and documentation
completeness standards

Document readability – 17
Code readability Density of comments 0.1 –

.

Supply and Distribution System. If this system has
a catastrophic failure, a back-up battery can power
the station for about one hour, during which time
the failure must be detected, the fault removed,
and the power production restored. These severe,
very specific requirements demanded a powerful
way to define their external attributes and to eval-
uate them.7

Identify product portions, quality requirements,
and targets

The Telescience project had two sets of quality
requirements for the Electric Power Supply and
Distribution System because different subsystems
had different reusability requirements. Hence the
team defined two product portions: the Electric
Power Supply subsystem and the Power Distribution
subsystem. The design and some of the code of the
power supply subsystem will be used in a commer-
cial control board for the power supply hardware,
whereas the other subsystem is not expected to
be reused.

Perform feasibility analysis
After quality requirements are specified, the Squid

toolset supports feasibility analysis by comparing
the quality achievements of similar past product por-
tions with the quality requirements of the current
product portion. Because the Telescience project is
the first to use the Squid approach, however, no past
experience was available.

Despite this significant limitation, the Squid ap-
proach supported quality specification by forcing
software engineers to analyze the system quality re-
quirements in-depth, solve conflicts between func-
tional and nonfunctional requirements, and identify
quality requirements for each portion of the system.

Quality planning
Squid defined two main activities for quality

planning.

Select the development process for each product
portion

Based on the application’s characteristics and the
organization’s past experience, the Telescience team
used only a conventional Waterfall model for all the
product portions. This model was represented as a
series of review point types together with a set of
deliverable types and development activity types.
The team introduced these into the Squid database
and integrated them with the other components of
the Squid data model, as described earlier.

Assign target values to internal quality attributes
The identification of the internal quality charac-

teristics, attributes, and targets proved difficult in
this project because of the lack of previous experi-
ence. Developers therefore relied on expert opinion,
using as a starting point a set of attributes sug-
gested by the Squid project staff. The ability of the
Squid toolset to store and use past company expe-
rience should facilitate target-setting in the future.

Quality control
Squid outlined two main activities to help the

Telescience team monitor the project’s progress;
both are still underway.

Identify deviations by comparing targets and
actual values

The development team can identify deviations
from plans by comparing target values with actual
values of the internal quality attributes. They have
already done so for internal quality attributes related
to project objects delivered early in product devel-
opment. While the Telescience project represented
an experimental application of the Squid method,
this feature significantly improved software engi-
neers’ ability to control product quality during de-
velopment. This activity will continue throughout
the Telescience design and development life cycle.

Identify software components with unusual
attribute values

The Telescience team found this toolset facility
particularly useful. Scatterplots relating two attrib-
utes for the same objects provide a useful visual aid
for analyzing the project’s large number of deliver-
ables. Anomalous components can immediately be

7 6 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9

Figure 4. Example of a scatterplot used to identify anomalous

modules.

.

detected and examined more closely to identify
possible quality problems.

Figure 4 shows the scatterplot of the attribute
“number of faults” (total number of faults detected
in the module during testing) versus “cyclomatic
complexity”for a subsystem’s modules. Each project
object (the modules in this figure) appears as a point
within the scatterplot; users can click on the point
to identify the project object and obtain more in-
formation about it.

Most software engineers believe that properties
of the intermediate products of the develop-

ment process affect final product behavior, but there
is little scientific evidence of this link and no suc-
cessful examples of using it to predict or control final
product behavior. Squid aims to clarify this link by
encouraging software developers to collect quality
data and analyze the relation between properties of
both the intermediate products and the develop-
ment process with final product behavior. The pro-
totype toolset developed and used in the Antarctica
Telescience project is now being upgraded to an in-
dustrial prototype for more extensive trials. ❖

ACKNOWLEDGMENT
This was partially funded by the European Commission

as the Squid (Software Quality in Development) and Valse
(Validating Squid in Real Environments) projects. We thank
the EC and all our colleagues who collaborated with us in
those projects.

REFERENCES
1. ISO 9001 Quality Systems—Model for Quality Assurance in

Design/Development, Production and Servicing, Int’l
Organization for Standardization, Geneva, 1994, pp. 652-663.

2. V.R. Basili, R.W. Selby, and T.Y. Phillips, “Metric Analysis and
Data Validation across Fortran Projects,” IEEE Trans. Software
Eng., Vol. SE-9, No. 6, Nov. 1983.

3. N.F. Schneidewind, “Minimizing Risk in Applying Metrics on
Multiple Projects,” Proc. 3rd Int’l Symp. Software Reliability
Eng., IEEE Computer Soc. Press, Los Alamitos, Calif., 1992,
pp. 173-182.

4. ISO 9126 Information Technology—Software Product
Evaluation—Quality Characteristics and Guidelines for their Use,
Int’l Organization for Standardization, Geneva, 1991.

5. N.E. Fenton, Software Metrics: A Rigorous Approach, Chapman-
Hall, London, 1991.

6. B.A. Kitchenham, S.L. Pfleeger, and N.E. Fenton, “Towards a
Framework for Software Measurement Validation,” IEEE Trans.
Software Eng., Vol. 21, No. 12, Dec. 1995, pp. 929-944.

7. A. Pasquini, E. De Agostino, and G. Di Marco, “An Input-
Domain-Based Method to Estimate the Reliability of Software,”
IEEE Trans. Reliability, Vol. 45, Mar. 1996, pp. 95-105.

M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 7 7

Researcher’s
CORNER

Jørgen Bøegh is a researcher in computer science at
Danish Electronics, Light, and Acoustics (Delta) in
Denmark. He received an MSc in mathematics and
computer science from the University of Aarhus.
From 1980 to 1985 he was with the Danish Defense
Staff; since 1985 he has been with Delta (formerly
Elektronik Centralen) in its Software Engineering
Division. He has been involved in several European

research projects in the areas of software quality and software certifica-
tion. His research interests include software quality and software quality
measurement. He is a member of ISO/IEC/JTC1/SC7.

About the Authors

Stefano Depanfilis is the director of the Software
Engineering Competence Centre at Engineering
Ingegneria SpA, an Italian software house. His inter-
ests include software development process
customization, support, monitoring, and control.
He has been involved in several European research
projects in the area of software measurement, soft-
ware quality, and software process improvement;

on some of these projects he served as project manager.

Alberto Pasquini is principal research investigator
in software engineering at the Robotics and
Information Technology Division of ENEA, the
Italian national research agency for new technol-
ogy, energy, and the environment. He received a
doctoral degree in electronic engineering from the
University La Sapienza of Rome. His research inter-
ests include software reliability, software quality,

and reliability of the human computer interaction. He is a member of the
program committee of several international conferences and will be pro-
gram chair of the upcoming conference Safecomp 99 (Safety, Reliability,
and Security of Computer Systems). He has published more than 40 pa-
pers on software reliability, testing, and safety.

Barbara Kitchenham is a principal researcher in
software engineering at Keele University as well as
a member of IEEE Software’s Editorial Board. Her
main interest is software metrics and their support
for project and quality management; she has writ-
ten more than 40 articles on the topic as well as
Software Metrics: Measurement for Software Process
Improvement. She spent seven years at the UK

National Computing Centre. Kitchenham received a PhD from Leeds
University.

Address questions about this article to Pasquini at ENEA, sp.088, Via Anguillarese 301, 00060 Rome, Italy; e-mail pasquini@cassaccia.enea.it.

.

