
0018-9162/04/$20.00 © 2004 IEEE February 2004 21

C O M P U T I N G P R A C T I C E S

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

A Copper Bullet for Software
Quality Improvement

A
s Fred Brooks described in his famous
“no silver bullet” paper, there is no sin-
gle action the computing community
can take to radically improve software
quality. There are, however, “copper

bullets”—lesser steps that improve quality over
time. One such copper bullet is the notion of soft-
ware engineering, the practice of thinking carefully
before immersing yourself in the minutia of cod-
ing. Judiciously applied, software engineering
should improve quality.

In theory, that makes sense, but for better or
worse, software is becoming larger and more com-
plex, which makes the benefits of software engi-
neering less noticeable. As the software community
faces an unprecedented number of project failures,
researchers must continue the hunt for new copper
bullets to offset the complexity.

A quality improvement strategy that the commu-
nity has largely ignored is to use database reverse
engineering to measure the quality of software that
a company is looking to buy. Companies now rou-
tinely assess vendor software on the basis of cost,
functionality, user interface, and vendor stability, but
none of these dimensions addresses the software’s
intrinsic quality. Database quality, on the other hand,
could be a litmus test for overall quality. If a product
has a flawed database, it is likely to have other qual-
ity issues, such as messy programming. In contrast,
the quality evident in a sound database is likely to be
present in the software’s other parts.

Over the past 11 years, my colleagues and I have
been evaluating software using database quality as
the basis for product grading. We have found that
reverse-engineering a database can help a company
deeply understand the associated product. Moreover,
the time to do the evaluation (sometimes only a few
person-weeks) is trivial compared to the millions it
can cost to buy and deploy the application.

The benefits of this copper bullet are enormous.
As reverse engineering pressures vendors to improve
their offerings, vendors upgrade their software
development practices to survive the scrutiny.
Success then depends less on marketing prowess and
more on technical merit.

Proficient vendors receive more notice, can nego-
tiate more attractive prices, and can look forward
to increased sales. Inferior vendors receive less rev-
enue and are eventually forced from the marketplace
as companies flock to their more proficient com-
petitors. Openness is encouraged, since reverse engi-
neering makes it plain what models and database
designs vendors actually offer, regardless of what
the vendor is willing to publish.

Thus, as more companies practice database
reverse engineering, aggregate vendor quality should
improve, benefiting the entire software community.

The suggestions offered here extend only to data-
base assessment, not to the more general problem of
reverse engineering to assess code. I have found that
this is hardly a limitation, however, since large com-
panies tend to buy mostly information systems, which

Michael
Blaha
Modelsoft
Consulting
Corp.

Most software engineers agree that
software quality improvement comes
not from a silver bullet but from a
combination of strategies. One of these
copper bullets is to reverse-engineer
a vendor’s database as part of an
evaluation to determine overall
quality before buying the product.

22 Computer

are built around a database. I’ve also found that ven-
dors are more willing to provide their database struc-
ture than programming code, which makes database
reengineering a more realistic improvement strategy.

WHY REVERSE ENGINEERING?
Forward engineering is the process of building

software. Development flows forward from prod-

uct conception, through analysis and design, and
then finally to implementation. Most developers
view this flow as more iterative than sequential,
given the endless reviews and feedback loops.
Reverse engineering begins at the end, with the
application code, and works backward to deduce
the requirements that spawned the software.1

Reverse engineering is certainly not new. Indeed,
savvy developers use it to study existing applica-
tions and salvage useful ideas, data, and code. To
my knowledge, however, few software engineers
have applied reverse engineering to vendor assess-
ment. I believe this is an oversight and that reverse
engineering of vendor products should be a rou-
tine aspect of all software evaluations.2

CONNECTING DATABASE AND
PRODUCT QUALITY

When we began evaluating databases in 1992,
we decided to adopt the grading system in Table 1
to summarize the results of reverse engineering. We
have found that business leaders readily understand
the meaning of the grade, realize that we have the
supporting technical details, and appreciate being
allowed to study the details at their leisure. As the
table shows, we assess the quality of both the data-
base design and the conceptual model that under-
lies the database using A, B, C, D, or F, with A being
the best grade and F the worst.

The first time we performed database reverse engi-
neering, it was as an experiment. We were studying
a vendor product and were perplexed by our expe-
riences. The vendor had a great marketing story and
clearly understood the business requirements. The

Figure 1. Database design flaw—anonymous fields.

location_address_1 location_address_2 location_address_3

456 Chicago Street

198 Broadway Dr.

123 Main Street

Chicago, IL xxxxx

Decatur, IL xxxxx

Suite 201

Cairo, IL xxxxx

Chicago, IL xxxxx

Table 1. Grading scale used in reverse-engineering databases.

Grade Explanation Design flaws Model flaws

A Clean • No significant flaws • Style is reasonable and uniform
B Structural flaws, but they don’t affect the • Data types and lengths not uniformly assigned • Anonymous fields that application

application (can be repaired without much • Not-null constraints not used to enforce code must interpret
disruption) required fields

• Unique keys and enumerations not defined
• Columns have cryptic names like Cell123

C Major flaws that affect the application • Undefined primary keys • Needless complexity
(bugs, low performance, difficult • Propagated identity • Excessive inheritance
maintenance) • Haphazard indexing • Specific modeling errors

• Foreign-key data type mismatches primary key
• Parallel foreign keys

D Severe flaws that compromise the • Much unnecessary, redundant data • Lack of crisp conceptualization
application • Extensive binary data (compiled programming • Many arbitrary restrictions

language data structures), subverting the
declaration of data

• Gross denormalization
• Dangling foreign-key references

F Appalling (the application won’t run • Gross design errors • Deep conceptual errors
properly or runs only because of
brute-force programming)

Figure 2. Database design flaw—using a sequence number for a one-to-many
relationship: (a) tables as implemented and (b) the logical intent.

A table

B primary key
sequenceNumber
A attributes…

B table

B primary key
other B attributes…

BA 1 *

(a)

(b)

February 2004 23

company was both large and credible, so we
expected high-quality software. When we encoun-
tered a number of problems with the product, we
decided to look at the database and discovered that
its poor quality was at the root of the problems.

This experience prompted us to look at additional
databases, after which we decided that database
reverse engineering was not an odd technology, but
something we should routinely perform. We started
keeping records of our experiences and have
amassed 11 years of data in a grading table (available
in its entirety at www.modelsoftcorp.com). I believe
our results represent broad practice, given that a dif-
ferent team prepared each database. We evaluated
databases only from developers we did not advise
as part of our consultant work, and we included
databases only for applications that a vendor actu-
ally completed.

The case studies include both vendor assessments
and in-house reengineering and where possible
indicate if the application succeeded or failed, with
“success” defined as actual use. Of course, by def-
inition, the case studies are biased toward success,
given that we (as customers) did not see the prod-
ucts companies scrapped.

QUALITY PROBLEMS
Our assessments revealed many applications

with flawed databases. More important, database
quality has improved little in 11 years. At best, I
can give only a flavor of the problems we encoun-
tered, but we did see many recurring design flaws.
Several databases had anonymous address fields,
for example, which satisfies database design the-
ory, but is sloppy nonetheless.

Consider the data in Figure 1. To find a city, you
must search multiple fields. Worse yet, it could be
difficult to distinguish Chicago the city from
Chicago the street. Furthermore, you might need
to parse a field to separate city, state, and postal
code. A better design would put address data in dis-
tinct fields that are clearly named.

Some database designs used a sequence number
to resolve a one-to-many relationship so that it
could be buried on the “one” side, as in Figure 2.
The sequence number is a completely meaningless
field, making it difficult to find data in the A table.

Another common flaw was overloaded foreign
keys. In the tables of Figure 3, each address can be
linked either to a person or a company (targetID)
as indicated by switch.

Several databases had propagated identity, as in
Figure 4. From reading the database textbooks, you
might think that propagated identity is fine, but

Figure 3. Database design flaw—overloaded foreign keys.

Address table

addressID
…

Person table

personID
…

Company table

companyID
…

AddressLink table

addressID
targetID
switch

Figure 4. Database design flaw—propagated identity: (a) UML model; (b)
implementation with propagated identity, which causes two sources to propagate
a field; and (c) a better implementation with existence-based identity.

Airline

airlineName

FrequentFlyerAccount

accountNumber
balanceCurrentAmount
balanceCurrentDate

1 *

MonthlyStatement

statementClosingDate
mileageMonthlyAccount

Activity

activityDate
mileageAmount

*

1

*

1

0…1 *

FFA table

airlineID
accountNumber
balanceCurrentAmount
balanceCurrentDate

MontlyStatement table

airlineID
accountNumber
statementClosingDate
mileageMonthlyAccount

Airline table

airlineID
airlineName

Activity table

activityID
activityDate
mileageAmount
airlineID1
accountNumber1
airlineID2
accountNumber2
statementClosingDate

FFA table

ffaID
accountNumber
balanceCurrentAmount
balanceCurrentDate
airlineID

MontlyStatement table

monthlyStatementID
statementClosingDate
mileageMonthlyAccount
ffaID

Airline table

airlineID
airlineName

Activity table

activityID
activityDate
mileageAmount
monthlyStatementID
ffaID

(a)

(b)

(c)

24 Computer

from a modeling perspective, it is clearly an inferior
approach. Propagated identity leads to multiat-
tribute primary keys and can give rise to the situa-
tion in which a field is propagated from two sources,
but must be duplicated to enforce referential
integrity. In the Activity table in Figure 4b, for exam-
ple, airlineID1 and airlineID2 really represent the
same field, but the design requires two separate
fields—two copies—to satisfy referential integrity.
Thus, AirlineID1 + accountNumber1 refers to
the FFA table. AirlineID2 + accountNumber2 +
statementClosingDate refers to the Monthly-
Statement table. Unfortunately, with SQL, a field
cannot refer to two tables, so a single airline field
cannot refer to both FFA and MonthlyStatement
without causing mathematical ambiguity. Figure 4c
shows a correct implementation with existence-
based identity, which eliminates the need for dupli-
cation.

One database informally linked tables by human
inspection, rather than formally linking them via
referential integrity. In Figure 5a and 5b, the com-
pany name is embedded in the job name. Each job
pertains to a customer company; a company can

have many jobs. The link may be easy for a human
to detect, but it can be difficult for a machine. First,
the link between the columns is not declared in the
database. However, even if the link is known, the
precise computational relationship varies and is
arbitrary. In Figure 5b, company name is a sub-
string of job name, but there are case differences
(Acme vs. acme) and punctuation differences
(AT&T vs. A.T.&T.).

INTERPRETING RESULTS
The data we collected in our reverse-engineering

case studies proved to be a useful indicator of his-
torical software quality. Table 2 summarizes the
grades converted to points: A = 4.0, B = 3.0, C =
2.0, D = 1.0, and F = 0. Although there is some scat-
ter in the data, the table shows clearly that data-
base designs and models have improved little over
the past 11 years. My colleagues and I suspect that
the increased use of database design tools could
explain the modest improvement in database
design quality. Even so, the average database design
and conceptual model remain mediocre.

The data essentially confirms our conclusion
from anecdotal observation that modeling shows
little improvement. Models baffle many develop-
ers, who do not appreciate the leverage that mod-
eling can provide in building applications. Roger
Box and Michael Whitelaw were quite accurate in
observing that abstraction is the most difficult
aspect of modeling.3

We believe that the root cause for the lack of
improvement is that universities are not teaching
students how to model software. Many universi-
ties teach the syntax of modeling, but they don’t
teach the art and thought processes. We presume
that most professors are not teaching modeling
because they don’t know how to do it themselves.

We also found a correlation between vendor
applications and software developed in-house. As
Table 3 shows, the two have comparable quality,
which means that software houses are not neces-
sarily more professional than IT departments
within corporations, as some might expect.

REVERSE ENGINEERING AND ETHICS
Many articles tend to give reverse engineering a

sinister image, implying that developers typically
use it to re-create a product.4 In all our case stud-
ies, we made it clear that this was not our goal.
Besides being unethical, reimplementation is usu-
ally uneconomical. Instead, we assured vendors
that our focus was to assess the software’s merit,
to get past hidden assumptions and the sales claims,

Figure 5. Database design flaw—informally linking tables: (a) company table, (b)
job table, and (c) logical intent.

companyName address phoneNumber

Simplex

Acme

AT&T

100 S. Main

111 Broadway

201 Potomac

555-3141

555-1234

555-1812

Company table

jobName
estimated
StartDate

estimated
StartDate

Simplex new PC

Acme PC repair

A.T.&T. LAN upgrade

acme disk repair

Jan 1, 1990

Jul 3, 1986

Feb 9, 1987

Oct 5, 1986

estimated
Duration

1 month

2 weeks

3 months

2 weeks

$200

$5,000

$20,000

$50

Job table

Company

companyName
address
phoneNumber

Job

jobName
scheduledStartDate
scheduledDuration
estimatedCost

1 *

(a)

(b)

(c)

February 2004 25

and to gain a deeper understanding of the product
so that we could better communicate with the ven-
dor and use the software more effectively. In short,
when we assess products, we are merely trying to
determine what the vendor is selling.

When we reverse-engineer a product, we openly
ask vendors for their database structure and tell
them why we want it. If they refuse, we tell them we
will penalize them in the evaluation. We performed
many of these reverse-engineering case studies
under commission from large companies. Large
companies emphatically do not want to devote
their resources to re-create a product. Commercial
software is important to them, but it is incidental
to their primary business. Otherwise, they would
be writing their own software, not purchasing it.
The industrial mentality is to outsource work that
is not a core competency, so rewriting commercial
software is one of the last things these companies
want to do. In light of that, most vendors acqui-
esce and settle for a nondisclosure agreement to
protect them from competitors. We encourage our
clients to agree to reasonable nondisclosure terms
and to make it clear to the vendor that there is no
intent to compromise its technology or reveal its
secrets to competitors.

Some vendors might find reverse engineering
threatening, but it should worry only the inept.
Superb vendors should welcome the process because
it makes their excellence visible in a much more
credible way than words or an impressive sales ad.

D atabase quality is undeniably a good indi-
cator of application quality. I have found
that business leaders welcome the insights

gained from database reverse engineering and use
them to make more informed decisions about pur-
chasing an application. More important, the ben-
efits have the potential to ripple into the entire
computing community. If vendors improve, in-
house software development will follow suit. The
same personnel, over time, move between vendors
and in-house staff, and demand from vendors and
customer companies will pressure universities to
teach students better.

At this time, only pockets of people are assess-
ing vendor software with database reverse engi-
neering, and I would like to see the practice spread.
If everyone would reward excellent vendors and
penalize sloppy ones, we could improve overall
software quality, not just in databases, but eventu-
ally in code. And that would be a copper bullet that
benefits the entire computing profession. �

References
1. M. Blaha, A Manager’s Guide to Database Technol-

ogy: Building and Purchasing Better Applications,
Prentice Hall, 2001.

2. M. Blaha, “On Reverse Engineering of Vendor Data-
bases,” Proc. Working Conf. Reverse Eng., IEEE CS
Press, 1998, pp. 183-190.

3. R. Box and M. Whitelaw, “Experiences When
Migrating from Structured Analysis to Object-Ori-
ented Modeling,” Proc. Australasian Computing
Education Conf., ACM Press, 2000, pp. 12-18.

4. B.C. Behrens and R.R. Levary, “Practical Legal
Aspects of Software Reverse Engineering,” Comm.
ACM, Feb. 1998, pp. 27-29.

Michael Blaha is a partner of Modelsoft Consult-
ing Corp., a consulting and training company based
in Vancouver, BC, and is Computer’s area editor
for databases and software. His research interests
include object-oriented technology, modeling, sys-
tem architecture, database design, enterprise inte-
gration, and reverse engineering. Blaha received a
PhD in chemical engineering from Washington
University and is a member of the IEEE Computer
Society. Contact him at blaha@computer.org.

Table 2. Grade average (converted to points) for data-
base designs and models over time.

Statistic Grade

Design average, first 21 case studies* 1.7
Design average, last 21 case studies 2.2
Model average, first 21 case studies 1.9
Model average, last 21 case studies 2.2

*The first 21 case studies are roughly from 1992 to 1997; the last
21 are roughly from 1997 to 2002.

Table 3. Relative average grades for vendor and
in-house software.

Statistic Grade

Design average, vendor 2.1
Design average, in-house 1.7
Model average, vendor 2.1
Model average, in-house 2.0

	footer1:

