
1 1 8 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E

Q u a l i t y T i m e

Jeffrey Voas

For years now, I have been fortunate to be able to
sample many of the software quality conferences and
workshops held in the US and in Europe. Numerous
IEEE and non-IEEE organizations deserve commen-
dation for providing these excellent venues of learn-
ing and technical interchange.

However, I’ve started to feel that the software
quality community has become too satisfied with
the “state of the practice.”Today’s conferences offer
few speakers with new ideas, and the enthusiasm
that once surrounded our community seems ab-
sent. Those days when people would proudly hand
out a business card with a title such as “software
safety evangelist” (a real example) seem distant.

If those days are gone, the question becomes
“why?”After all, none of the major challenges of cre-
ating quality software or assuring quality have been
conquered. We face the same problems today that
we did a decade ago, but now the urgency for solu-
tions is greater.

Our present dilemma can be best explained by
walking through the past decade’s major software
quality trends and their associated myths. By myths,
I refer to the claims used to support the numerous
software quality “silver bullets” that flourished and
faded in the past decade. Although I could add
lesser items to my list, I consider the following eight
as the main culprits. (Because these fads are hard to
compare fairly and quantitatively, they appear in no
particular order.)

1. PROCESS IMPROVEMENT AND
MATURITY

The myth associated with this trend states that
measuring an organization’s process maturity is
equivalent to measuring the organization’s software
quality. This implies that simply building a more ma-

ture process will also produce mature (that is, higher-
quality) software.

Process improvement and rating your profes-
sional maturity are laudable. However, it’s fallible to
assume that a software development organization
that receives a high rating will produce software as
good as the organization.1 Unfortunately, this myth
is endemic in the software and IT industries, and
decades will pass before the myth is erased.

2. FORMAL METHODS

A special case of the first myth, this myth states
that formal methods are the “process improvement”
answer to any and all security, reliability, and safety
problems. Formal methods are simply rigorous de-
velopment processes for mathematically demon-
strating that software retains certain desirable prop-
erties. Formal methods aim to make everything
precise to eliminate ambiguities, inconsistencies,
and other logically incorrect behaviors that might
exist in current system plans or definitions.

Although there is nothing wrong (and a lot right)
with applying formal methods, their limitations
have been well publicized2 and their adoption
highly limited. The key problems are that they are
hard to implement, expensive, and not foolproof.

3. LANGUAGES AND OOD

This myth indicates that by changing the lan-
guage or design paradigm, problems that could not
be resolved using existing languages or design
strategies will go away. Les Hatton summarizes this
problem nicely: he says that we have relied too heav-
ily on the “language of the day” to solve problems
that we could not solve using yesterday’s language,E

D
IT

O
R

:
Je

ff
re

y
Vo

as
 •

Re
lia

b
le

 S
o

ft
w

ar
e

Te
ch

n
o

lo
g

ie
s

• j
m

vo
as

@
rs

tc
o

rp
.c

o
m

Software Quality’s Eight
Greatest Myths

S e p t e m b e r / O c t o b e r 1 9 9 9 I E E E S o f t w a r e 1 1 9

and because our problems were never language-
related, we naturally failed.3

Today’s systems are creeping past all reasonable
complexity thresholds. They are being implemented
through complicated languages (that have so many
features that few people understand the features
fully or correctly). For example, the current craze—
object-oriented languages—provides threads, poly-
morphism, inheritance, encapsulation, information
hiding, and so on. These features
cause serious problems when
misused. You could argue that
these complicated languages are
making it harder to build quality
software than if we used older languages that were
less feature-rich.

Modern design paradigms that advocate ab-
straction (for example, information hiding and en-
capsulation) also make system-level testing more
difficult to perform efficiently and adequately.
Making systems harder to test will never engender
higher-quality systems. Testing is already hard
enough!

4. METRICS AND MEASUREMENT

This myth says that numerical information about
the development processes and code reveals whether
the software is good or not. Before we can debunk
this notion, we must be precise as to what it means for
code to be “good.”

For most people, good code computes the de-
sired function in the desired manner (for example,
correctly and with real-time constraints). Good is not
a measure of how the code is structured or looks;
good is an assertion that the semantics of the func-
tion that the code computes is the code’s intended
function.

Because structural metrics do not measure se-
mantics, they cannot say whether the code is good
(using this interpretation)—neither can process met-
rics. Unfortunately, when the field of metrics was
young, some suggested that metrics could measure
semantics, and when it was shown they could not,
metrics received its still-tarnished reputation.

Another problem that has shadowed its reputa-
tion is that the collected metrics are often not fed
back into the development process to improve the
process. Interestingly, code metrics are probably bet-
ter at assessing the quality of development processes

than they are at assessing the code quality. Feed the
results of measurement back into the organization
and improve your processes!

Also, it is vital to recognize that metrics are indi-
rect measures of immeasurable properties. For ex-
ample, you cannot measure a program’s testability
and maintainability. But you can measure the num-
ber of lines of code. Because a program with one line
of code will be more testable and maintainable than

a one-million line program, the “lines of code” met-
ric is one way to estimate how testable and main-
tainable code will be. The fundamental problem is
that people still try to use metrics as absolute pre-
dictors (for example, if the cyclomatic complexity is
greater than 10, go wild!). Generic claims cannot al-
ways be true for all systems. Instead, here’s a good
rule of thumb: metrics give guidance; they are not ab-
solute recipes for how to achieve quality.

5. SOFTWARE STANDARDS

The fifth myth states that by following published
standards, you can toss common sense on software
development out the window—in other words, fol-
lowing a recipe (standard) blindly. (Admittedly, if you
work in a regulated industry, you are forced to
blindly follow the rules and regulations of that in-
dustry’s regulator).

Software-engineering standards have grown ex-
plosively during the past 20 years. (Most of these
standards have been process-oriented—a pitfall dis-
cussed in the first myth.) A fundamental challenge
for organizations (for example, the ISO, IEEE, and IEC)
that promulgate standards is to provide information
on the value added by following their standards. For
example, if you follow standard A, it will cost B in re-
sources, and you will receive C benefits for having
done so. If each standard carried with it a simple (av-
erage case) analysis such as this, standards would
be easier to compare, contrast, and adopt.

In short, I have numerous concerns about stan-
dards, a few of which I list here:

♦ They lack timeliness (they are usually approved
and published well after they were relevant);

♦ Some view them as impediments to compe-

Metrics give guidance; they are not
absolute recipes for how to achieve quality.

1 2 0 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 9

tition instead of advocates for quality;
♦ They have unquantified value-added benefits;
♦ They do not specify how they are to be satis-

fied; and
♦ They have an unknown relationship to estab-

lished “best practice” or related standards.
I am not advocating that standards should not be
used, but one size does not fit all; you should con-
sider your situation’s specifics before opting for a
standard.

6. TESTING

This myth states that testing can get a project out
of any bind. Just toss the code over the fence, and
the testers will clean up all problems.

This is clearly foolish. Capers Jones’data says that
the probability of this occurring is around 15%. That
is, if a project is in serious trouble and the develop-
ers wait until the testing phase to address the prob-
lems, the project will be very difficult to salvage.

7. COMPUTER-AIDED SOFTWARE
ENGINEERING

The next myth, probably my favorite, states that
programming a specification through a schematic
or pictorial language will produce higher-reliability
code. CASE was the rage back in the early 1990s; it
argued for using computers to generate text (code)
from pictures. The thinking was that CASE could im-
prove software quality because people make fewer
errors when drawing pictures. Once a picture existed,
a computer could take the picture and automatically
generate code.

The intuition here is reasonable. But incorrect pic-
tures will be translated into incorrect code. So the
notion that pictorial representations of systems will
result in higher-reliability code is suspect. Garbage
in—garbage out.

8. TOTAL QUALITY MANAGEMENT

The final myth says that if we meditate on qual-
ity long and hard enough, quality will sink into the
product.

TQM is the perfect example of that myth in ac-
tion. TQM is a manufacturing religion that argues

that if you “eat, sleep, and dream”quality, then qual-
ity is more likely to permeate a product. And in man-
ufacturing, this works.

Software is not manufacturing, however. It is an
inventive process. Software is a creative expression
using logic. The notion that a “quality zealotry”from
the manufacturing industry would apply to software
development was mistaken.

STICK TO THE FACTS

I believe that the failure of these ideas as stand-
alone silver bullets has made practitioners cynical
about new ideas in software quality. The concern,
then, is that future breakthroughs could be too
quickly dismissed. Furthermore, if the community de-
cides that the many problems related to software
quality are unsolvable, research dollars and the next
generation of bright researchers will not be available.

It is true that when the aforementioned eight
ideas are taken in moderation and combination,
they provide ways to produce good software. My hat
is off to the thousands of scientists, researchers,
graduate students, and practitioners that have la-
bored for years to create these seminal ideas.

However, I must echo a warning: our research
community must be more careful to not oversell its
ideas to practitioners before the supporting evi-
dence is in hand. That supporting evidence must
fairly consider both the costs and limitations of
adopting new technologies.

We all have a role to play here. Practitioners need
to write articles and give talks at forums informing
researchers of the real problems. And researchers
must validate their claims on real systems (not toy
systems) before marketing their ideas. If the research
and practitioner communities unite, it can be a part-
nership where the sum far outweighs the parts. ❖

REFERENCES
1. J. Voas, “Can Clean Pipes Produce Dirty Water?” IEEE Software,

July/Aug. 1997, pp. 93–95.

2. S.L. Pfleeger and L. Hatton, “Investigating the Influence of
Formal Methods,” Computer, Vol. 30, No. 2, Feb. 1997, pp.
33–43.

3. L. Hatton, “Does OO Sync with How We Think?” IEEE Software,
May/June 1998, pp. 46–54.

Q u a l i t y T i m e

Jeffrey Voas is cofounder and chief scientist of Reliable
Software Technologies. He received a PhD in computer
science from the College of William and Mary. Contact him at
jmvoas@rstcorp.com.

