
ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 88

Fifty Years of Progress in Software Engineering
h B. S. Raccoon

raccoon@ibsr.com

PROG34.WPD - NOV 14, 1996

Introduction
A Water Metaphor of the Evolution of Software Engineering

The Wave Shape of Interest in a Technical Development
Extending the Water Metaphor (Structures in the Flow)
Related Concepts of Scientific and Artistic Progress
Dating a Technical Development

Eleven Streams
Hardware Economics: Mainframes, Mini-Computers, Personal Computers, and Internet
Organization Technologies: Statements, Functions, Modules, Objects, and Frameworks
Optimizers: Statement, Loop, Function, and Inter-Function Optimizers
Programming Environments: Compilers and Editors, Creneral-Purpose Tools, and Domain-Specific Tools
Conceptual Technologies: Algorithms, Abstract Data Types, and Patterns
Program Ideals: Utility, Documentation, Correctness, and Usability
Models: Waterfall, Spiral, and Chaos Models
Life Cycles: Waterfall, Sashimi, and Chaos Life Cycles
Process Structures: Unified Process, Macro-Process and Micro-Process, and Complexity Gap
Strategies: Stepwise Refinement, Module Decomposition, Object-Oriented Design, and Chaos Strategies
User Participation: Once, Periodic, and Ongoing

Relationships Between Streams
Linking Organization Technologies with Optimization Technologies
Linking Strategies with Organization and Optimization Technologies
Linking Models with Strategies
Linking User Participation with Models
Linking Other Streams with Models

Six Tides
Naive
Functions
Structured Programming
Modules
Objects
Patterned Programming

Conclusion
Acknowledgements
Bibliography

© Copyright 1996 by L. B. S. Raccoon, Albuquerque, New Mexico. All Rights Reserved.

INTRODUCTION

In this paper, I describe a new outlook on the history of Software Engineering. I portray large-scale structures within Software
Engineering to give a better understanding of the flow of history. I use these large-scale structures to reveal the steady, ongoing evolution of
concepts, and show how they relate to the myriad whorls and eddies of change. I also have four smaller, more specific purposes in writing
this paper.

First, I want to point out that old ideas do not die. In The Mythical Man-Month after 20 Years, Brooks claims "the Waterfall
Model is Wrong." But if the Waterfall model were wrong, we would stop arguing over it. Though the Waterfall model may not describe the
whole truth, it describes an interesting structure that occurs in many well-defined projects and it will continue to describe this truth for a
long time to come. I expect the Waterfall model will live on for the next one hundred years and more.

Second, I want to show that the Chaos model, Chaos life cycle, Complexity Gap, and Chaos strategy are part of the natural
evolution of Sottware Engineering. The Chaos model and strategy supersede, but do not contradict, the Waterfall and Spiral models, and
the Stepwise Refinement strategy. They are more up to date because they express contemporary issues more effectively, and fit our
contemporary situations better. The Chaos model, life cycle, and strategy are equally as important, but not better than, other concepts.

Third, I compare the Chaos model, life cycle, and strategy to other models, life cycles, and strategies. This paper can be
considered a comparison of the ideas presented in my papers about chaos with other ideas in the field. I avoided comparisons in my other
papers because I wanted to define those ideas in their own terms and the comparisons did not further the new ideas.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 89

Fourth, I make a few predictions about the next ten years of Software Engineering. The large-scale structures described in this
history provide a stronger base for understanding how software engineering will evolve in the future.

This paper is laid out as follows. In the first section, I use the flow of water as a metaphor to describe the flow of progress in
Software Engineering. I use the Water metaphor to show some of the structures within Software Engineering. The current work builds on
top of the historical work, and future work will build on top of current work. In the remaining sections, I describe the waves, streams, and
tides that portray the evolution of concepts and technologies in Software Engineering.

A WATER METAPHOR OF THE EVOLUTION OF SOFTWARE ENGINEERING

In this section, I compare the flow of water with the flow of progress in Software Engineering. I use waves, streams, and tides to
describe units of progress. Waves represent individual technical developments. Streams represent sequences of waves or the evolution of
technical developments on one theme. Tides represent the simultaneous interest in a group of different technologies, or a generation of
technologies. The Water metaphor shows that software development does not advance steadily, but progresses like the slow ebb and flow
of a tide.

The Wave Shape of Interest in a Technical Development

Each technical development wave evolves through four stages of
interest: innovation, growth, maturity, and convention, as shown by the
wave in Figure 1. Waves represent the level of interest in a technical
development by the whole community of software engineers. Waves are
defined in terms of the level of interest, rather than in terms of the amount
of work because the two terms represent distinct concepts. For example, in
the 1990s, we still spend fortunes to write and maintain Cobol and
Assembler programs, even though few people consider either technology
interesting. Waves represent the level of interest by the whole field, rather
than the personal convictions of any individual.

Innovation: During the Innovation stage, a neat, new technical
development slowly acquires a group of supporters. The technology may
require ten or more years to become fully developed and widely Understood.
It takes a while to spread the word about any new technical development.
Some technologies, such as Fortran, took only five or ten years to become
popular. Others, such as Object-oriented programming, took more than
twenty years to catch on. During the Innovation stage, businesses may take
the new technology seriously, but are not yet willing spend money to
acquire new tools or to train their employees.

t
10 to ~ 5 years---~

1950s

Time

1973 1980 1988

Figure 1: The Wave of Interest in Modules.

Growth and Maturity: During the Growth and Maturity stages we consider the technical development important. In the Growth
stage, the technology has been proved out, and it becomes increasingly popular as supporters emphasize its possibilities. In the Maturity
stage, interest in the technology levels off, as uniform enthusiasm gives way to a balanced understanding. We finally push the technical
development to its limits and find its flaws. We may perceive a backlash against the technology, because detractors emphasize its
limitations. Popularity wanes and the technical development begins to bum out. The combined Growth and Maturity stages often last ten to
fifteen years. During Growth and Maturity stages, we often confuse technical developments with the projects that implement them. Thus
during the 1960s, we did not speak of"function languages," but rather of"Fortran" and "Algol." During the Growth and Maturity stages,
businesses will spend money to acquire new tools and train employees to use the technology.

Convention: During the Convention stage, everyone in the field assumes that the core idea of the technical development is valid
and the core idea becomes part of the genre or the background information. We know the limitations of the technical development and we
address them by moving on and developing new technologies. Modules moved into the Convention stage in 1988, when developers
realized that modules do not give much control over allocation and deallocation of resources or the ability to create multiple instances of
modules. We are now addressing these issues with objects. As the technical development becomes more conventional, we notice it less and
less. The embodying projects die out while the technical development lives on. Thus, the languages Fortran 2 and Algol, which originally
embodied functions, have nearly died, even though functions live on as a vital part of alrnost all contemporary languages. During the
Convention stage, businesses often require that employees can proficiently use the technology.

Extending the Water Metaphor (Structures in the Flow)

In this section, I portray large structures within the flow of progress in Software Engineering. Waves combine sequentially to form
streams and combine side-by-side to form tides.

Streams: Streams are sequences of waves that represent the evolution of one theme. Waves in a given stream share a focus on a
specific problem. Each wave picks up where the last wave leaves off. For example, the Organization stream describes the evolution of
organization structures. Figure 2 shows the sequence of organization waves, from the Statement "wave" to the Function "wave" to the
Module "wave" to the Object "'wave" to the Framework "wave."

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 90

In this paper, I focus on eleven loosely interdependent streams. Some streams are technical, others are conceptual. The streams
are not necessarily equal in value or force. Some streams are more important than others. We control some streams, such as how we view
process. Other streams are out of our control, such as the economics of hardware.

Streams can be very closely related. Sometimes one stream divides into two related streams. When the Waterfall model was
introduced, we thought of the terms "model" and "life cycle" as synonyms. I distinguish between these terms because I distinguish between
the structure of a project and the sequence of events within a project, respectively. Sometimes one stream strongly influences another. I
believe that strategies invariably encourage developers to use current technologies well, so as technologies change, strategies need to keep
up. I also argue that models and strategies share a symbiotic relationship.

Tides: Tides are a confluence of many waves that share the same zeitgeist (spirit of the times). For example, the Object tide
reflects the increasing importance of object-oriented languages and tools, as well as many collaborating changes, including usability, the
Object-Oriented Design strategy, Booch's distinction between the Macro-process and the Micro-process, and the emphasis placed on the
design of larger and more sophisticated systems, particularly ones with graphical user interfaces. All of these changes together represent a
complete change of worldview. Tides represent popular movements. Each tide overwhelms the field as it comes in, bringing a new set of
issues to the surface, and then recedes, leaving old issues scattered or buried. Tides seldom match any particular wave exactly.

In this paper, I focus on six tides. The two best known tides are the Structured Programming tide which lasted from 1967 to 1978
and the Object tide which I expect will last from 1989 to about 2000.

I believe that tides are often related in pairs: a technological change over ten years often inspires a conceptual change in the
following ten years. During the first tide of a pair we learn to use a new technology. During the second tide of the pair we learn to use the
technology well. For example, the Function tide emphasizes using functions while the Structured Programming tide emphasizes using
functions well. And, the Object tide emphasizes using objects while the Patterned Programming tide will emphasize using objects well.

Related Concepts of Scientific and Artistic Progress

The Water metaphor closely resembles the model of artistic progress described by Bowness in The Conditions of Success.
Bowness points out that successful artists, such as Hockney and Manet, took five or ten years to earn the acceptance of their peers and
about twenty five years to earn the full acceptance of the art community. And further, once these artists achieve their breakthroughs, they
have "ten (or even five) good years" when they make their greatest impact on the field. Afterwards, their careers gradually taper off, when
they do good work, but no longer influence the field as much.

The Water metaphor also resembles the models of scientific progress described by Bauer, Beveridge, Cohen, Ferguson, and
Kuhn. Cohen argues that the "scientific revolution" never happened, that scientific progress began long before 1600 and has accelerated
steadily ever since. Bauer and Ferguson emphasize slow, long-term progress, arguing that many technical developments follow decades (or
even centuries) of steady improvement. Beveridge points out that many important scientific observations precede the "official" scientific
discovery by one or more decades. Kuhn emphasizes rapid, short-term progress, arguing that communities undergo revolutions, called
"paradigm shifts," when they adopt new technologies.

I believe the Water metaphor encompasses all of these points of view. Like Cohen, I believe that a "software engineering
revolution" never occurred, because we addressed the issues of productivity and quality decades before 1968. Most streams in software
engineering began long ago. Like Bauer, Beveridge, and Ferguson, I believe that most technical developments follow years of evolution.
The waves and tides show how technologies may undergo decades of improvement, then enjoy ten to fifteen years of popularity, and then
fade away slowly. Like Kuhn, I believe that technologies sometimes appear revolutionary. Kuhn's revolution corresponds to the rapid
growth of interest at the transition from the Innovation stage to the Growth stage.

Which scale is best? I believe that each scale reveals a part of the truth, which is a very complex interplay of all scales. While all
of these scales matter, I want to emphasize the medium- and long-term progress.

Dating a Technical Development

Dating the rise and fall of a technology is almost always difficult. Identifying when a technology shifts from the Innovation to the
Growth stage is particularly tricky. If we are lucky, we may know the date of the first publication or of a specific event. Thus, we could date
the rise of Object-oriented programming from the release of Simula in 1967, the release of Smalltalk-80 in 1980, or the OOPSLA-1
conference in 1986. But, even the most popular events may only foreshadow a surge of interest that takes years to catch on. Perhaps it is
more accurate to date a technology from some period of time after an event, say three years, to allow it time to catch on. The trick is to
distinguish between when an event occurs and when it matters.

In this paper, I strive to consistently choose dates that bracket the Growth and Maturity stages. I strive to date each technical
development from its upswing to the upswing of the next technical development. Thus, I date the Ftmction-oriented programming wave
from 1958, one or two years after the first Fortran compilers, to 1973, when modules took over. And, I date the Object-oriented
programming wave from 1988, a couple years after the OOPSLA- 1 conference and more than twenty years after Simula. These dates are
my current best estimate.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 91

Hardware
Economics

Table 1: Fifty Years of Progress in Software En ;ineering (Approximate)

Naive
Tide

1945--1955

Research
Mainframes

Organization Statements

Optimizers

Programming
Environments

Concepts

Program Ideals

Models

Life Cycles]

Process
Structures

Strategies

User Participation None

Function
Tide

1956--1966

Commercial
Mainframes

Structured
Programming

Tide

1967--1977

Commercial
Mini-Computers

Module
Tide

1978---1988 I

Personal Computers

Functions Modules

Statement [Loop, Basic Block .

Editors and Compilers

Object
Tide

Patterned
Programming

Tide

2000?---2010?

Internet

Objects

Function [Inter-Function

Domain-Specific Tools

Chaos Model

Use~l

~yp~sable eneral"
Purpose Tools

Waterfall Model Spiral Model

Waterfall Sashimi
Life Cycle Life Cycle

Unified Process Macro- and Complexity
Micro-Process Gap

Chaos Strategy Module I Object-Oriented
Decomposition Design Strategy

Chaos
Life Cycle

Ongoing

Stepwise
Refinement Strategy

Once I Periodic

ELEVEN STREAMS

.In this section, I describe the eleven streams that most influenced the Chaos model, life cycle, and strategy, even though they do
not exactly define Software Engineering. I exclude management, estimation, and testing streams, as they did not influence the Chaos model
and Chaos life cycle directly. (I invite others to write about these subjects.) I include hardware economics, organization, and optimization
streams, because they strongly influence software engineering, even though depending on your point of view they more properly belong
within another branch of computer science. I exclude hardware concerns, such as MIPS and memory, since many people have written
about them.

Table 1 details the progress of these eleven streams. In the table, cells represent waves, rows represent streams, columns
represent tides, and the whole table represents the flow of progress in Software Engineering. The first five streams denote technologies and
the last six streams denote concepts. The figures throughout this text refer to entries in this table.

Hardware Economics

Hardware economics drives software economics. Each generation of hardware makes computers affordable to a new class of
users and changes the economics for programmers. I define hardware waves in terms of user perception and economics, rather than
electronic technologies which users may not understand or appreciate.

Research Mainframes - - 1945 to 1955: In the 1940s and early 1950s computer hardware was developed within research
projects. These projects built one-of-a-kind hardware and emphasized research. The programs written from 1945 to 1955 reflect the issues
that stemmed from research projects: experimental mathematics, control, and business systems. Early programs solved puzzles or research
problems in an ad hoe way. Developers were learning what hardware and software could do. Researchers placed little emphasis on
productivity, as the software projects were sponsored as an outgrowth of very expensive hardware development projects.

Commercial Mainframes - - 1956 to 1966: During the 1950s, with the commercialization of mainframes, businesses began to
emphasize productivity. Mainframes cost millions of dollars, but we recognized that developers were now business employees. To improve
productivity, developers created macro-languages, speed coding, and Fortran. But, given the cost of a mainframe and the large support staff
needed to run the mainframe, businesses could afford to write their own custom applications for a small portion of their computer budget.

Commercial Mini-Computers - - 1967 to 1977: In the 1960s, mini-computers became popular, costing upwards of 50
thousand dollars. For the first time, small businesses could afford their own computers, and the need for software development productivity

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 92

increased because businesses could no longer hide software development staff in the hardware budget. The quest for more productive
software development coincided with the Structured Programming movement of the late 1960s and early 1970s. Compiled languages, such
as Cobol and PL/1 became increasingly popular. This wave launched large-scale commercial software, because the owners of rnini-
computers wanted to purchase software rather than write software. Commercial software companies spread development costs over tens or
hundreds of copies of a program.

Personal Computers - - 1978 to 2000?: Beginning in the early 1980s, a single software developer's annual salary cost much
more than one computer. Personal computers cost thousands of dollars. Thus, the personal computer exaggerated the economics of
software development even further. The decreased operating margins forced a completely different way to finance, build, and sell software
which led to the current mass markets for consumer and business software. Commercial software companies spread development costs
over thousands or millions of copies of a program.

Internet - - 2000? to ?: In the late 1990s, the Internet, internationalization, ubiquitous computing, and other economic forces are
coming to bear. The Interact provides inexpensive access to tremendous computing resources. Developers will increasingly create, sell,
and distribute software directly to consuraers, without the overhead of packaging and corporate distribution channels. The Intemet will
encourage even greater productivity from developers as margins drop even further.

Organization Technologies

Organization technologies are motivated by our need to organize
larger and larger programs. In Object-OrientedAnalysis andDesign,
Booch describes the evolution of organization technologies in terms of the
"program topology" or the relationship between data and code. To some
extent, organization defines the relationship between function and data, so it
is really a name space problem. But organization affects the way that we
think about programs. Figure 2 shows the evolution of the Organization
stream from the Statement wave to the Function wave to the Module wave
to the Object wave to the Framework wave.

Statement-Oriented Programming - - 1945 to 1957:
Statement-oriented programming began when programs imitated the step-
by-step operation of hardware. Statement languages include machine code
and assembly languages. Assembly languages are a big improvement over
machine code because Assembly languages eliminate much, ffnot all, detail
about the machine's bit patterns, much of which is arbitrary. According to
Booeh, in statement-oriented programming all data is global. All statements
can access all dafa. • We could say that assemblers are expression
compilers. In fact, assemblers only compile parts of an expression, but they

1945
Time

1958

Module

1973

I

1988 2003?

Figure 2: The Organization Stream.

point to compiling larger expressions, such as the statements found in Fortran 1. Using Assemblers today is more a matter of habit than
intent, because assemblers do not define any new ideas and industry shows very little interest in using them. Statement-oriented languages
have continued evolving into general-purpose languages like APL and J and command languages like Tel. The end of this wave became
apparent when developers began using macros and Fortran extensively.

Function-Oriented Programming - - 1958 to 1972: Function-oriented programming began in the 1950s with Fortran. Fortran
had an assembler-like syntax for statements, but extended organization to the function level by adding a special syntax for functions. A
function wraps a group of statements together to express one idea more completely. The syntax and implementation of functions was later
refined in Algol and Pascal. According to Booth, function-oriented languages distinguish between global andioeal data and enable
programmers to limit access to local data. • I date the Function wave from 1958 when Algol duplicated Fortran's functions. Subroutines
were used in the earliest days of computing. In The Preparation of Programs for a Digital Computer from 1951, Wilkes, Wheeler, and
Gill describe dividing programs into subroutines. Functions remain vital parts of nearly,all contemporary languages. Developers still write
lots of code in Function languages or in Object languages using a function-oriented programming style.

Module-Oriented P r o g r a m m i n g - - 1973 to 1987: People noticed Module-oriented programming in the early 1970s, when
developers began asking, "how should groups of functions work together?" The goal of modules is to help functions to cooperate with each
other. The Module wave began with languages like C, which used the C preprocessor and some innovative header file conventions'to
create modules. C combines an Algol-like syntax for functions with a macro preprocessor for gluing modules together, enabling developer,
to build programs out of modules. Other module languages, including Alphard, CLU, Modula, and Ada, improved the syntax and error
checking between modules, but did not significantly improve the functionality beyond that provided by C. Unfortunatdy, the ANSI C
committee took fu~een years to bring it up to the standards set by Ada, CLU, and Modula and fix the problems with C's type system.
According to Booth, Module-oriented languages distinguish between global, module, and function data, and enable programmers to limit
the sharing of information between functions. • The roots of modules go back to the earliest "assemblers" and linkers from around 1950,
Fortran from the middle 1950s, and PL/1 from the middle 1960s. Unfortunately, these early tools provided little help for module design.
Early linkers were oblivious to the meanings and types of names. The Fortran common block does a poor job of sharing data, because
developers must retype all of the declarations in each module, risking mistakes. During the 1950s and 1960s, developers used modules to
optimize compilation rather than to organize programs.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 93

Object-Oriented Programming-- 1988 to 2002?: Object-oriented programming helps functions and data to work together
very closely. Objects help developers to control the allocation, deaUocation, initialization, and especially the management of multiple
instances of state variables and data structures, much more effectively than modules. According to Booch, Object-oriented languages
distinguish between global, module, object, and function data. Object-oriented programming languages refine the sharing of information
between functions, by shifting control from modules to objects. • Object-oriented technologies were developed shortly after functions,
specifically, Simula in the 1960s and Smalltalk in the 1970s. Simula and Smalltalk influenced many of the programming languages of the
1970s and 1980s, even though objects did not truly succeed until after 1988. Objects have now reached the Maturity stage, because we are
beginning to criticize their lack of emphasis on semantics. We are making type-safe libraries possible by using templates to plug the holes
in the type system. I expect that objects will remain important concepts for many decades to come.

Framework-Oriented Programming - - 2003? to ?: Templates and frameworks help objects work together. They can be
thought of as type-safe macros or as code generators for objects. In many ways, templates and frameworks apply the data abstraction
mechanisms from CLU, Alphard, and Ada to objects. To simplify the distinction between them, templates are language constructs and
frameworks are tool or programming environment constructs. Balance defines frameworks indirectly with the statement, "frameworks are
to objects as parents are to unruly children." In A Framework-Based Environment for Object-Oriented Scientific Codes, Balance,
Giancola, Luger, and Ross describe frameworks in more detail.

Optimizers

Optimizers matter because they free developers from the need to deal with specific small details to concentrate on larger issues,
so that developers can do more important things. Optimizers are more important than software engineers may realize. I believe that, for
good or bad, developers feel responsible for the efficiency for all of the code that they produce. Developers take responsibility for the
optimizer's shortcomings and all code that the compiler does not generate well. This means that before the statement optimizer, developers
felt obliged to take responsibility for the assembly code. They felt it necessary to specify the gotos, until optimizers could handle loops and
basic blocks. The point is not to forbid access to small details, but to free developers from dealing with unimportant small details. Each
transition in optimization technology moves more functionality into the optimizers.

Statement Optimizers: Early Fortran compilers began with statement optimizers. The first compilers optimized each statement
independently, one at a time. Statement optimizers allowed developers to ignore the implementation of individual statements, but
developers still had to worry about the flow between statements.

Loop Optimizers: In the early 1960s, the Fortran community developed loop and basic block optimization techniques, to assure
Fortran's continued reputation as the most efficient language and to stay ahead of the compilers for Algol and PL/1. Compiler writers
learned how to optimize loops using "reduction of strength" transformations, which required a thorough understanding of"while" and "if '
statements and basic blocks. Developers no longer had to worry about gotos.

Function Optimizers: Full function optimization was part of the on-going improvement in compiler technology. But it wasn't
until the middle 1980s that "global optimizing" compilers were well understood, and it wasn't until the 1990s that global optimizing
compilers became widely available from commercial sources. Developers no longer had to worry about the code within a function.

Inter=Function Optimizers: Inter-function optimizers that can analyze many functions at once have been under development for
many years. Specific techniques range from improving data flow analysis to sharing one activation record among several functions to
inlining functions selectively to specializing function calls. However, inter-function optimizers have not yet become part of off-the-sheLf
commercial compilers.

Programming Environments

Programming environments are the tool sets that we use to improve the productivity of Software Engineers. We have always had
programming environments, but some are more useful than others. Now, software engineers assume that a programming environment is a
rich tool set. But, note that even today, most tools still do not work together as well as they should and even the current crop of tools hardly
encompasses the full scope of what developers do.

Compilers and Editors: The pioneering tool sets of the 1950s included assemblers, compilers, linkers to combine programs
with libraries, and editors. Card punches are "card-oriented" editors. At the time, compilers and editors encompassed everything that we
thought developers did.

General-Purpose Tools: The concept of "programming environment" really got going when the Unix operating system provided
tools that went well beyond basic compilers and editors. Unix supported many more of the activities that all developers do: writing
documentation and specifications, coding, testing, and communicating with others. Unix developers wrote the tools: vi, grep, make, cc, rcs,
database tools, scripting tools, document processing tools, and mail. Typically each tool implemented one algorithm robustly and provided
an interface to read one or a few representations of data from files. In other words, these tools raised algorithms to the level of the user, and
pipes enabled users to combine algorithms together from the shell. "Make" is another sophisticated tool for combining programs together.
Enthusiasm for the Unix operating system proves that developers both want and need a full set of tools to be productive. The Unix
operating system supports the C programming language and other programming environments support the Lisp and Ada programming
languages.

Domain-Specific Tools: In the last few years, we have developed tools oriented toward the special needs of specific groups of
developers. As developers have specialized into groups that address user interfaces, testing, embedded systems, design, and other issues,
they have acquired their own tools. User interface groups use interface builders and dialog editors. Testing groups use scripting tools, test
case generators, and error tracking databases. Designers use dataflow diagrams and entity relationship editors. Another recent development

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 94

is domain-specific languages, such as Perl for scripting and Tel for embedding. Ad hoe versions of these tools appeared decades ago, but
we are now getting them right.

Conceptual Structures

Conceptual structures describe the relationship between specific problems and specific solutions. Conceptual structures are the
units of programming analysis and description that we use to catalog our concepts. Conceptual structures exist independently of both
applications and technologies. Algorithms, abstract data types, and patterns all document specific solutions to specific problems.

Algorithms: Algorithms describe specific solutions to specific low-level problems. Because of their close ties to analysis,
algorithms emphasize low-level details. Knuth was the first to organize and analyze them consistently. The Art of Computer Programming
was a break-through because, for the first time, developers could use a book of algorithms like chefs use a book of recipes. • Algorithms
ex'tend back to the middle ages, and became increasingly important in the late nineteenth and early twentieth centuries. Knuth didn't invent
algorithms, but he was the first to show how important the), are to computer science.

Abstract Data Types: In the 1970s, theorists realized that groups of algorithms work together to implement larger concepts.
Few algorithms work in isolation. For example, a search tree abstract data type combines algorithms that insert one element, insert many
elements, delete one element, find one element, combine two trees, and so forth. Abstract Data Types enable researchers to analyze the
behavior of sequences of operations, notably Amortized Complexity. Tarjan and Sleator showed that any sequence of Union-Find and
Splay Tree operations is efficient despite the possible inefficiencies of any one operation. Because of their close ties to analysis, Abstract
Data Types emphasize low-level details. • The algorithms that manipulate data structures were developed in groups from the earliest days.

Patterns: The most recent development in conceptual structures is patterns. Developers are now applying Alexander's ideas
about patterns to soRware design. Patterns express conceptual structures from all levels of a project, including the problems defined by
applications, the solutions defined by technologies, and everything in between. Some patterns fit mid-way betweetra problem and a
solution, while other patterns focus more on the problem or more on the solution. Because analysis is not the primary use for patterns,
patterns are not necessarily tied to low-level details, and so they help to transition away from the underlying technologies. Patterns are
particularly important because they describe how middle- and upper-level concepts work together. • In 1968, Knuth used English to
describe his algorithms. Knuth's use of stylized English presaged the style of patterns by twenty five years. But until patterns became
popular, describing algorithms in English, rather than pseudo-code, seemed old-fashioned. We can think of algorithms and abstract data
types as low-level patterns.

Program Ideals

Program ideals are the goals or properties of programs that we
strive to achieve in our code. In one sense, program ideals are the
properties that m.ake a program elegant, well-designed, well-implemented,
and salable, and therefore make the program worth writing. Ideals are still
changing becausc both developers and uscrs arc still learning what
computers can and should do. Figure 3 shows the evolution from Useful to
Documented to Correct to Usable.

Use fu l - - 1945 to 1960: In the 1940s mad 1950s, developers
used software to make computers useful. Research often focused on what
hardware could accomplish. In today's terms, projects solved very small
problems. The programs were often considered less important than the
hardware. Programming made the machines useful to mathematicians,
scientists, and accountants.

Documented - - 1961 to 1973: With the first real
oommergialization of software, programs needed to be documented to be
salable. Many applications were big, ad hoc, and ugly, but if they were
documented they ~u ld be sold. This was the era of OS/360 and huge
manuals. In fact the term "'documented" was often interpreted as "'well-

"N

t

.,se Rocum Cor et t,, ,le

1945 1961 1974 1987

Time

Figure 3: The Program Ideal Stream.

planned" and "deliberate." • In the 1990s, some companies still ship enormous manuals on CD-ROM to impress and befuddle their users.
Though increasingly, companies strive to minimize the documentation of a program, which often contains errors and overly constrains
changes to the functionality of the program.

Correct - - 1974 to 1986: In the 1970s, people realized that documentation muSt not only exist, it must also be meaningful and
correct. This means both that documentation must aecurately describe the program and that the program must live up to the documentation.
The documentation of the time was occasionally wrong, but more often it was ambiguous or incomplete. Consider the old jokes about
IBM's "Great Oral Tradition." Many researchers advocated formally proving all programs correot. • In Pro_m'amming Lan_maages--The
First 25 Years, Wegner points out that the Correctness movement began in the middle 1960s with papers by McCarthy, Naur, Dijkstra,
Floyd, and others. Correctness grew to dominate the ideals of the late 1970s and early 1980s. The Correctness wave began to wane in the
middle 1980s when DeMillo, Lipton, and Perlis's argument that proofs reflect social processes rather than absolute truths caught on. The
Correctness movement never accepted that a program (such as a word processor) with many minor correctness flaws can provide much
more benefit to users than no program at all and it never dealt with the rapid life cycles and iterative nature of the consumer software
industry. The movement then self-deslructed after a controversial editorial to the Communications of the ACM in March 1989 about the

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 95

dangers of criticizing correctness. The ensuing backlash showed that political appeals cannot stay the decline of a wave. The correctness
issue continues on today within a small sub-culture, addressing life-critical applications such as pace makers and bomb triggers.

Usable-- 1987 to ?: In the 1980s, developers realized that users do not care about the relationship between a specification and
its implementation or "correctness." Users want meaningful functionality. Users just want to get their work done. Developers admitted that
notall computer users are experts or ever will be. This led developers to admit that naive and casual users won't do difficult tasks and even
experts may not make full use of a program with a poor user interface. • In the 1970s, usability started offat Xerox. In the middle 1980s,
the Personal Computer industry (led by Apple) picked up the concept of usability, and graphical user interfaces made it out of the lab.
Software vendors learned that sales depend on keeping users happy.

Models

Models describe the structures within software development projects. Models matter because we use them as the banners of the
various camps campaigning to improve Software Engineering. Figure 4 shows the progression of structures from the Waterfall model to
the Spiral model to the Chaos model.

Waterfall Model: The Waterfall Model, described in Manau, ing
the Development of Large Software Systems by Royce, is the mother of all
models and it describes simple projects well. The Waterfall model
describes software development as a fixed sequence of discrete, irrevocable
steps, Programmers should first design everything, then implement
everything, and so on. The Waterfall model emphasizes one-shot planning.
• We interpret the Waterfall model to suggest that problems encountered
early in a project will only get worse and that to improve the process, we
should improve the front end parts of the process most. One criticism is that
the Waterfall model fails to account for change and other evolutionary
aspects of projects, such as debugging and maintenance. It also fails to
guide large, complex, or exploratory projects. • Royce was the first to
define a specific structure for software development.

Spiral Model: Boehm described the Spiral model in A Spiral
Model of.Software Development and Enhancement. The Spiral model says,
"build a prototype using the Waterfall model, then revise the objective as
necessary, and build a new prototype." Essentially a project is a sequence
of prototypes, each of which refines the previous prototype. Since each

Figure 4: Three Models.

prototype develops according to the Waterfall model, software development projects resemble a loop of Waterfalls. The Spiral model
emphasizes iterative planning. This iterative structure can accommodate more complex, ambiguous, and misunderstood problems. • In his
paper on the Waterfall model, Royce remarked that projects are iterative, but he did not develop the reasons why iteration matters. Boehm
was the first to explain how and why the different iterations work together.

Chaos Model: Raccoon described the Chaos model in The Chaos
Model and the Chaos Life Cycle. The Chaos model combines a simple
problem-solving loop with fractals to describe the many levels of a complex
project. All levels matter equally. So, software development resembles a
chaotic cascade of Waterfalls. The chaotic complexity allows it to reflect
the behavior of the most complex and misunderstood problems. The Chaos
model emphasizes planning throughout the process. Raccoon interprets the
Chaos model to suggest that software development can be very
unpredictable. • Prior to 1995, researchers proposed many recursive
models. In the early 1980s, I recall hearing several speakers at technical
conferences comment that the Waterfall model could be applied recursively
to parts of a project. In The Impact of DoD-Std-2167A on Iterative Design
M.e.thogl_ ologies: Help or Hinder? from 1990, Overmyer describes many
recursive models. In 1993, Olson argued that because of feedback, software
development is chaotic, but he did not describe a specific model. And, in
1996, Kokol, Brest and Zumer discuss chaotic soft'ware complexity. Before
the Chaos model, nobody carried the recursion down to the "one line of
code" level or interpreted the recursion level-by-level.

Life Cycles

Life cycles describe the sequence of events within a project.

R D I M

Waterfall

Enhanced
Waterfall

Sashimi

Chaos

Figure 5: Three Life Cycles.
These diagrams show the percent of effort devoted to
Requirements analysis, Design, Implementation, and

Maintenance phases as a function of time.

Figure 5 shows the evolution from the Waterfall life cycle to the Sashimi life cycle to the Chaos life cycle.
Waterfall Life Cycle: In Managing the Development of Large Software Systems, Royce makes no distinction between the

Waterfall life cycle and the Waterfall model. The Waterfall life cycle rigidly separates the phases of development. We interpret the
Waterfall life cycle to suggest that developers should plan to meet specific deadlines and other goals. The Waterfall life cycle contradicts

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 96

concepts like "design for test," which mix up the phases.
Sashhni Life Cycle: In Wicked Problems, Righteous Solutions, DeGrace and Stahl report on the Sashimi life cycle defined by

Takeuchi and Nonaka. The Sashimi life cycle allows phases to overlap and the process evolves more flexibly. • Early extensions of the
Waterfall life cycle allowed a project to go back and forth between two adjacent phases, as shown by the Enhanced Waterfall diagram in
Figure 5. Unfortunately, this diagram with back arrows reminds me ofa Markov chain and conveys a different shift in emphasis than the
Sashimi life cycle.

Chaos Life Cycle: Raccoon describes the Chaos life cycle in The Chaos Model and the Chaos Life Cycle. The Chaos life cycle
allows phases to come and go, though the whole process gradually shifts from Requirement Analysis to Maintenance. Since all
development activities occur throughout the process, the phases show a change in emphasis, rather than substance. Because unexpected
difficulties and opportunities can arise, software development projects may evolve unpredictably and developers must respond to these
circumstances.

Process Structures

Process structure is about the number of levels that we perceive
within a process. Figure 6 shows the evolution from a Unified process to
the Macro- and Micro-processes to the Complexity Gap.

Unified Process: In this wave, we perceive software development
as one cohesive process. The same kinds of activities occur throughout the
whole process. For example, the specification activities are essentially the
same as the implementation activities. A unified process suggests that
control is possible. One implication is that we can schedule the writing of
individual lines of code.

Macro-Process and Micro-Process: In Object-Oriented
Analysis and Design, from 1994, Booch distinguished between different
activities in the Macro-process and the Micro-process. The Macro-process
concerns management issues of project scheduling, while the Micro-
process concerns hacker-level activities of writing lines of code. In this
wave, we recognize that using tools is hard and managing the project is
hard, but that these two parts of the process require distinct skills. Booch
implies that by elaborating on the parts of process that we already
understand, parts that are addressed by contemporary management and
developer tools and structures, we will improve software development.
Acknowledgingthat both levels embody a separate process implies that we
cannot schedule the writing of lines of code.

Complexity Gap: In The Complexity Gap, Raccoon argues that
the Macro-process and Micro-process do not touch because they concern
radically different issues. The Complexity Gap corresponds to the middle-
level structures that developers use to match Macro-process goals with
Micro-process solutions. The size of the Complexity Gap corresponds to
the nature of the problem, as well as the structures and support tools
available to help solve the problem. Raccoon argues that matching goals
and solutions is very difficult and, in fact, developers spend most of their
time working within the Complexity Gap. Raccoon emphasizes the
importance of the parts of the process that we don't understand, the parts
that are not defined by conventional management and developer tools and
structures. Acknowledging that there is a gap between the Macro-process
and the Micro-process implies that schedules are related to lines of code
indirectly through middle-level structures.

Strategies

All strategies raise the issue of efficient production. Strategies
help developers to produce effective programs quickly by expressing
priorities. A strategy is a body of knowledge that guides developers through
a sequence of actions or state changes, consistently pointing out good
moves and avoiding bad moves. Strategies focus attention on the tasks left
to finish by identifying the steps that must be completed. An appropriate

Process

Process

Micro-

Macro-
Process

Complexity
Gap

Figure 6: Three Process Structures.
The Top Represents the "Whole Program" Level.

The Bottom Represents the "One Line of Code" Level.

StepwiseRefinement
and Object-Oriented Chaos

Module Decomposition Design strategy
Strategies Strategy

Figure 7: Each Strategy Adds a New Emphasis.
Stepwise Refmement and Module Decomposition

strategies emphasizes Top-Down.
Object-Oriented Design strategy emphasizes Bottom-Up.

Chaos strategy emphasizes Middle-Out.

strategy encourages developers to keep working until the to do list is empty and the program is complete.
Every process follows a strategy. Beginners, randomly choosing any legal move, follow a very naive strategy, though most

strategies are more sophisticated. The advantages of Stepwise Refinement over random programming are obvious. Figure 7 shows the
evolution of strategies, from the Stepwise Refinement and Module Decomposition strategies to the Object-Oriented Design strategy to the

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 97

Chaos strategy.
Stepwise Refinement Strategy: The Stepwise Refinement strategy emphasizes top-down influences. We also call this strategy

the "top-down refinement" or "function decomposition" strategy. The developer begins with a conception of the entire program and then
breaks that conception into a sequence of smaller steps, expanding each in turn until a program is produced. The Stepwise Refinement
strategy defines simple but explicit sequences that work well for simple programs. • The Stepwise Refmernent strategy has four main
limitations. First, it works best for programs with lots of code and little data as it ignores the concept of state. Second, it presumes the
independence of sub-problems which may be untrue when everything appears connected to everything else. The Stepwise Refinement
strategy blindly assumes that a problem really is decomposable. Third, it doesn't allow for corrections and revisions. Some researchers
suggested that when this strategy is used properly, developers cannot make mistakes and will not need to make revisions. Thus, it fails to
cope with mistakes and requirement changes and other difficulties encountered during typical projects. Minor changes to the problem
definition can force major rewrites. Fourth, the Stepwise Refinement strategy provides no means to reconsider past decisions or make
corrections. Thus, it can easily lead to local minima that are very frustrating to work with. The Stepwise Refinement strategy can lead to
code bloat when developers produce many similar versions of a furtction because the strategy provides no means to revise the code.

Module Decomposition Strategy: The Module Decomposition strategy emphasizes top-down influences. Parnas applied the
Stepwise Refinement strategy to modules and argued that developers should break the application into separate modules, identifying one
module after the next, and that good modules should hide information. Pamas discusses the properties of good modules, but unfortunately,
not how to create good modules. • Parnas began describing module decomposition in 1971, and he points out that Gauthier and Pont
addressed modules in Designing Systems Programs from 1970.

Object-Oriented Design Strategy: The Object-Oriented Design strategy combines top-down and bottom-up goals, but it
emphasizes bottom-up goals. Objects combine functions with state variables, so developers need a bottom-up concept to reflect the design
of state. • The analog of"top-down algorithmic decomposition" is "object-oriented decomposition." When the Qbject-Oriented Design
strategy simply means, "design the classes ftrst," it resembles the Stepwise Refinement and Module Decomposition strategies. Botch, in
Object-OrientedAnalysis andDesign, and Coad and Yourdon, in Object-OrientedDesign, each define their own version of the Object-
Oriented Design strategy. The Object-Oriented Design strategy is actually independent of programming technology, because it simply
emphasizes both top-down and bottom-up issues, and it can be applied to Function and Module languages. • Botch first described parts of
the Object-Oriented Design strategy in Describing Software Development in Ada from 1981. Botch defined the whole strategy in
Oriented Development in 1986 and the strategy caught on around 1990.

Chaos Strategy: In The Chaos Strategy, Raccoon defines the Chaos strategy as, "resolve the most important issue first," where
issues may come from any level of the project. The Chaos strategy combines top-down, bottom-up, and middle-out goals, but it emphasizes
middle-out goals. It points out the difficulties of creating middle-level structures to match up the top and bottom levels. The middle-out
emphasis is important for coping with the middle-level issues, such as the components and modules identified by the Complexity Gap.
Because the activities in the middle levels are independent of applications and technologies, they differ from activities on other levels. The
Chaos strategy is independent of technologies and applies to both Function and Object languages.

User Participation

The relationship between developers and users has evolved slowly
over the years. The User Participation stream shows a gradual shift from
our emphasis on hardware to our emphasis on individual users, as well as
the shift in our perception of the user from being a corporation to being an
individual. I believe that users should be present throughout software
development, at least conceptually. In some cases, users know what they
want and should have authority over the project. In other cases, such as
mission-critical and life-critical applications, developers may have special
expertise and should have total authority over the project. Developers and
users should share the authority over the project appropriately. The
following questions describe some of the issues. "How do users fit into
software development?" "To what extent do we encourage users to
participate?" "Who is responsible for understanding the users's needs?"
"How far into the project do we cut offuser input?" Figure 8 shows the
evolution of the User Participation stream from None to Once to Periodic to
Ongoing.

No Interaction - - 1945 to 1969: In the earliest days, we didn't
acknowledge that users existed. Developers wrote programs for companies
or government agencies rather than "users." And, we defined software
development almost entirely in terms of hardware.

A

v

E !

None Once

Periodic Ongoing

Figure 8: Periods of User Participation in the Process.
This shows the percent ofproeess concerned with users.

One Interaction m 1970 to 1984: During this wave, we tolerated one period of interaction with users: the Requirements
Analysis phase. During the requirements analysis phase, developers queried the sponsoring organization. Developers thought that
applications were easy and programming was hard. So, once the user pointed us in the right direction, we would valiantly struggle with the
hardware on behalf of users. Satisfying the needs of users meant getting a program done. We thought that the real problem was the
computer.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 :January 1997 Page 98

Periodic Interaction-- 1985 to 1996?: During this wave, we accepted that many applications are hard to defme. Developers
must repeatedly refer to the user, to ensure that they solve the right problem. In this wave we opened the door to users a little wider, but we
still kept users at arm's length. We referred to users periodically, though within any one prototype developers allowed only one step for
interaction. As user interfaces became more important in the 1980s, user interface developers included users throughout their process, but
software engineers still excluded users from most of their process.

Ongoing Interaction - - 19977 to ?: During this wave, we recognize that users participate throughout the process. All software
is developed on behalf of users, and working with users is a basic part of all processes. We accept that users are as important as hardware.
Satisfying the needs of users means more than simply getting a program done. Users provide an ongoing dialog by requesting
enhancements and reporting bugs. This comes up in business and consumer application for personal computers. Developers working on
products that compete in the PC mass market value their ongoing relationship with users.

RELATIONSHIPS BETWEEN STREAMS

In this section, I describe the connections between streams, particularly between technologies, strategies, and models. All streams
progress together and each stream reacts to changes in the other streams. Advances in one stream often suggest advances in other streams.
In fact, an advance in one stream will often be ignored until it is supported by similar advances in other streams. If only one stream in
Software Engineering changed, we might not even notice it.

Linking Organization Technologies with Optimization Technologies

Organization and optimization technologies evolve very closely together. One way to thirik about the importance of optimization
is that most developers refuse to use a new notation unless it does them a specific favor. A new organization without a new level of
optimization adds the burden of notation for larger concepts, without reducing the developer's responsibilities. On the other hand,
improving only the optimizer without improving the organization leaves out half of the benefit to developers. Thus, to make the most
improvement, we must improve both organization and optimization technologies at the same time.

In a similar vein, interpreters do not free developers from the need for speed. Interpreters that implement high-level languages do
not shrink the range of a developer's responsibility. Interpreters are tools for abstraction and organization, but not optimization.
Interpreters have often been used to develop, but have rarely been used to popularize, new organizations. In Compiling Matlab, Johnson
and Moler describe the intricate relationship between interpreters and compilers in much more detail.

Function Languages and Statement Optimizers: Function languages organize functions and they optimize statements. Moving
from Assembly languages to Function languages with statement optimizers removed several layers of problem solving. Programmers
gained more than just smaller, more focused programs. They avoided several levels of problem solving: interpreting the higher-level
concepts, gener,'iting the assembler code, and optimizing the results. Developers can ignore immense amounts of assembler trivia and they
can put that energy to use implementing other aspects of the application. • Macros with parameters evolved very closely with functions.
Macros resemble functions, but provide little support for optimization because macros are based on simple text-based transformations that
are unable to express or use the underlying semantic structure. Note: the difference between functions and macros is that functions can be
optimized, which explains why modules and objects are built on top of functions rather than on top of macros.

Module Languages and Loop Optimizers: Soon after compiler writers learned to optimize loops, language designers created
Module languages. Loop optimizers were developed several years before Module languages, but both technologies caught on together in
the 1970s. Loop optimizers allowed developers to use loops and conditional statements for clarity, avoid gotos, and still write efficient
code. Loop optimizers became part of the effort to implement Fortran and Algol well, but were used most effectively in module languages.
Module organizations could not succeed without improved loop optimizers that free developers from even more low-level details than do
statement optimizers. • By the time global optimizing compilers became available, (which optimized whole functions), we were already
on the threshold of the Object wave.

Object Languages and Function Optimizers: Compilers for Object languages can parse the syntax that combines functions
into objects and they can optimize whole functions, one at a time. The delay in creating "global optimizing" compilers that could optimize
whole functions explains why Object-oriented programming took so long to mature. Until compilers could optimize whole functions,
developers felt responsible for implementing all concepts below the function level and were unwilling to focus only on object-level
concepts. When compilers could optimize functions, Cox invented Objective-C, Stroustrup invented C++, and Meyer invented Eiffel.
Stroustrup was the first to work through the implications of efficiently placing objects on the stack and in static memory. Compilers for
early Object-Oriented languages, including Simula and Smalltalk, lacked function optimizers and could not work with other languages and
compilers.

Framework Languages and Inter-Function Optimizers: I believe that when we can optimize groups of functions at one time,
we will invent another organization technology. Various forms of inter-function optimization have been proposed, including inter-function
data flow analysis and function specialization, but we still lack organization principles that empower these optimizers. In The Design and
Evolution of C+ +, Stroustrup argues that templates must be as efficient as type-safe macros, so he prohibits templates from providing
interesting inter-function optimizations, which means that templates provide less functionality than they could. One important optimization
enabled by frameworks is the selection of ftmetions. Balance and Gianeola used frameworks to choose the most efficient implementation ol
each function call in a program. When language designers overcome their current perspectives and meaningfully combine templates with
inter-function optimizers, they will invent languages that outstrip C++ and Ada-H-.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 99

Linking Strategy with Organization and Optimization Technologies

I want to point out the strong connection between technologies and strategies. It seems natural that developers should use
language resources as well as their circumstances permit. Developers not only need good technologies, they need to know when and how to
use the technologies. Good strategies tell us both. Strategies are tied to optimization and organization in that most strategies say: "use
current language resources well" or more specifically "trust both your organization and your optimizer." • We can think of strategies in
both technology-dependent and technology-independent ways. One criticism of the technology-dependent versions of strategies is that they
are much too literal. A strategy that is defined in terms of one technology will not keep up with evolving technologies and will succumb to
the end of interest in the defining technology. So, the Object-Oriented Design strategy will succumb to the end of current object-oriented
programming languages. Yet, the technology-independent concepts within these strategies will last for many decades to come.

Stepwise Refinement Strategy: The Stepwise Refmement strategy guides the development of Structured code. This strategy is
best known for emphasizing top-down goals but it actually combines both top-down and bottom-up goals. Both Mill's top-down ideas
about functions and Dijkstra's bottom-up ideas about trusting loop optimizers combine to form the whole Stepwise Refmement strategy.
Top-Down: Mills is renowned for urging developers to use functions well. A simplification of his proposal suggests: when writing a
program in C, developers should begin making decisions with the ma in () function and proceed down the "call graph," defining one
function after the next. Bottom-Up: Dijkstra is renowned for urging developers to "avoid gotos." For developers to follow his advice, they
had to trust that their optimizer would implement loops, conditionals, and basic blocks well. Dijkstra wrote about gotos, but he effectively
promoted trusting loop optimizers. I believe that without effective optimization technologies, Dijkstra's advice would have been ignored.
• In Structured Programming with Ooto Statements, Knuth points out that Schorre was avoiding gotos in 1963 and Landin was avoiding
gotos in 1966, but the issue caught fire with Dijkstra's paper in 1968.

Module Decomposition Strategy: The Module Decomposition strategy guides the development of module-oriented code. This
strategy is an adaptation of Mill's Function Decomposition strategy to modules that uses the principles of information hiding.

Object-Orientod Design Strategy: The Object-Oriented Design strategy guides the development of object-oriented code. It
emphasizes using objects for organization and exploits the new global optimizing compilers. Top-Dowm From the top, object
decomposition is an adaptation of the Function Decomposition and Module Decomposition strategies. The Object-Oriented Design
strategy encourages developers to break the application into a set of objects, identifying each object, one after the next, until a program is
produced. Bott0m-Up: From the bottom, two versions of the Object-Oriented Design strategy encourage developers to use bottom-level
technologies well. Both versions urge developers to trust that their compiler optimizes functions well. The Booch version says: "use
Object-oriented concepts well" by writing or changing one line of code or restructuring one whole chunk of code, until the program is
done. The Coad and Yourdon version extends this argument to "use all standard technologies well." The Coad and Yourdon version is not
truly "Object-Oriented," as they recommend using all sorts of technologies including relational databases, but it is a contemporary strategy
as they recommend using all technologies available in 1991 to their fullest.

Chaos Strategy: Templates and patterns are clearly middle-level constructs and the Chaos strategy says use resources from all
levels well. Since patterns apply to all levels, the Chaos strategy means, "use patterns well." In The Timeless Way of Building, Alexander
describes a version of the Stepwise Refinement strategy called "One Pattern at a Time" that is much too simple and out of keeping villa the
flexibility of patterns. He really needs the Chaos strategy. No other book on patterns discusses strategies for applying patterns. The Chaos
strategy can handle the up-coming inter-function optimizers, frameworks, and templates, which address issues closer to the middle levels of
contemporary applications.

Linking Models with Strategies

Models and strategies exist independently of each other, yet they need each other. Models define the structures within processes.
Strategies give day-by-day and line-by-line advice about software development. Since models don't give us line-by-line advice, we need
another concept like strategy. Since strategies don't define the larger structures within a project, we need models to support the use and
application of each strategy.

Waterfall Model and Stepwise Refinement Strategy: The Waterfall model describes large-scale structures in a project rather
than day-to-day programming activities. Stepwise refinement gives advice for completing independent and decomposable problems, rather
than large-scale program structures. The Waterfall model and Stepwise Refinement strategy seem well suited to each other because both
define a very self-assured, straight-forward, one-shot approach to software development and neither accommodates revisions or mistakes.

Spiral Model and Object-Oriented Design Strategy: The Spiral model describes large-scale iterations within projects and
ignores the day-to-day programming activities. The Object-Oriented Design strategy gives advice about adding one line of code, changing
one line of code, and reorganizing sections of code rather than large-seale structures. However, the Object-Oriented Design strategy needs
an iterative concept of process structure like the Spiral model. In the context of the rigid Waterfall model, the flexible Object-Oriented
Design strategy seems wishy-washy and out of place.

Chaos Model and Chaos Strategy: One criticism of the Chaos model is that it is so flexible that anything is possible and it
doesn't really tell anybody what to do, so developers need a strategy to guide their efforts. However, without a multi-level model such as
the Chaos model, the flexible Chaos strategy seems wishy-washy. The Chaos model and Chaos strategy support each other.

Boehm used the Spiral model to argue that managers should do risk analysis at the beginning of each prototype, when they define
the goals of the prototype. Raccoon used the Chaos model to argue that developers should always resolve the most important issue first,
which can be interpreted as extending Boehrn's advice to all levels of a chaotic process.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 100

Linking User Participation with Models

Models discuss the relationship between developers and users. These relationships can be explicit, as described in the Chaos
model, which devotes a whole section to the issue, or implicit, as described in the Waterfall model, which defines the Requirements
Analysis phase. I believe that the role that users play should depend on the particular application, so models should support user
participation to the extent that it is necessary. • Before the Waterfall model, we didn't document the roles of users explicitly.

Waterfall Model and One Interaction: The Waterfall model focuses on contract-based relationships and specifications, and
simplifies the goal of pleasing the user to meeting the specification. The Waterfall model defines exactly one period of interaction with
users: the Requirements Analysis phase. We use the Waterfall model to emphasize one-shot projects. This perspective is more prevalent in
projects sponsored by the DOD and DOE because it fits with the top-down, authoritarian style of these organizations.

Spiral Model and Periodic Interaction: The Spiral model focuses on contract-based relationships and specifications. It still
simplifies the goal of pleasing .the user to meeting the specification, but it enables more user input throughout the process. We use the
Spiral model to emphasize long-term, sequential relationships with users. The Spiral model encourages developers to repeatedly refer to
the user, though each prototype permits one specific step for this interaction.

Chaos Model and Ongoing Interaction: The Chaos model states that users participate throughout the process. The Chaos
model documents the ongoing interaction between users and developers as an important part of software development. Racxx~n uses the
Chaos model to show that users, developers, and technologies work together throughout the process to create useful technical solutions.
Users strongly influence the top half of the Chaos model. Raccoon did not invent ongoing interaction, rather the Chaos model documents
the relationship with users that many companies have fostered for years.

In A Rational Design Process: How and Why to Fake It from 1986, Parnas and Clements argue that even though processes are
iterative or perhaps even random, they should be treated as if they resembled the Waterfall model. They call this a "rational" approach to
process. • Now that we recognize our Ongoing interaction with users, we structure it into a Periodic interaction~tn the consumer software
industry, developers cannot produce a special version of software after each enhancement request and bug report. So, we group the users'
requests into minor and major revisions, and typically produce a minor release every three months and a major release every year or two.
For very "rational" reasons, we structure our Ongoing interaction into a Periodic interaction.

Linking Other Streams With Models

Many people think that models are theoretical curiosities. Yet many aspects of our contemporary reality can be interpreted in
terms of contemporary models. Table 2 links models with three other streams. I believe that each of these streams evolved of its own
volition. Models reflect, but do not impose, these perspectives.

Table 2: Lh~dng Models with Three Other Streams

Models Reuse Estimation Maintenance

Waterfall Each project was independent. We We estimated projects Maintenance is a total loss. So emphasize
didn't think about reuse, except in the independently, one at a time, proper specification, design, and
context of portability, using ad hoe methods, implementation to avoid maintenance.

Spiral

Chaos

Reuse became popular with the Spiral
model. Of the 178 references in
Confessions of a Used Program
Salesman by Tracz, only 38 came
before 1985, and only 13 before 1980.
During the late 1980s and early 1990s,
reuse was a very "Spiral" concept. We
reused a unit of code on one level. We
treated it like a product and reused the
whole chunk or didn't reuse anything.

In the late 1990s, we will reuse code on
many levels. Different people will
reuse parts from all scales of a project,
including all sizes of code, designs, and
specifications.

Boehm estimates the effect of
each project based on past
projects. The Spiral model led
to the Capability Maturity
Model using a sequence of
projects as the basis for the
next bid.

Learning curves emphasize
the economics of ongoing
processes. (Mandelbrot shows
that log-log space is chaotic.)

Maintenance feeds into the next project. As
long as code is reused, maintenance can be
paid for by the next project, so maintenance
is good. We emphasized maintaining code,
but not any other artifacts.

The Chaos life cycle shows that
maintenance equals development
throughout the process. We maintain code
in all phases (including specifications,
design, testing) on all levels.

SIX TIDES

When many aspects of our software development reality change, the combined waves form a tide. We cannot ignore these broad-
based transitions, even if many of the changes are only loosely related. This section builds on the linking between streams in the previous
section.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 101

I believe that from 1945 to 1999, Software Engineering will have evolved through five major tides, each lasting about eleven
years. I believe that we are on the verge of the next tide that will take Software Engineering into the next millennium.

Naive - - 1945 to 1955

The zeitgeist of the Naive tide is "computers are neat." We just began to understand computer hardware and software. Since many
people believed that software controlled hardware, they believed that software and hardware shared common problems and solutions.
Large programs were hundreds of lines long.

Software Engineering began with a decade of naive programming: the Naive tide. This tide could also be called the "Natural,"
"All-At-Once," or "Mystical" tide. The name "naive" does not necessarily mean that developers did a bad job. At the beginning of this tide,
we didn't know what we were doing, and uninformed developers often did bad work. We had no tools, no methodologies, no experience,
and no body of knowledge about how to create quality software productively. I suspect that many developers were very good and intuitively
did many things well. But in general, developers were unaware of the common concerns and solutions in Software Engineering, and they
were unable to consistently do a good job.

As the Naive tide evolved, we developed the inkling that software differs from hardware. Researchers invented linkers and
assemblers and other tools that exaggerated the differences between software and hardware. Software development resembled proving a
theorem or writing a novel, because a motivated developer worked hard and almost magically produced a program. The process was
undefined and we made few distinctions about what went on within the process. Anything goes. Whatever works. Programs happen.

Functions m 1956 to 1966

The zeitgeist of the Function tide is, "functions are neat." We understood that software development differs from hardware
development. Programming was accepted as an activity in its own right, as it had its own concepts and goals and'its own tools, problems,
and methodologies. Fortran embodied the first concept of a high-level language for users. The Function tide combines compilers for
function and macro languages, editors, and other tools, and the new objective of making computers useful. Functions flourished with the
commercialization of mainframes and the subsequent push to improve developer productivity.

Functions are Neat: The second tide concerned the use of functions. Language designers used functions in many ways, inventing
macros, Fortran, Lisp, Algol, and PL/1. In one way or another, functions have influenced computer science ever since. Functions raised the
following questions. The question, "Is there a better syntax?" led to the Algol, Pascal, and C families of languages. The question, "Is there a
better software architecture for Algol?" led to the refinement of stack allocation and recursion. The question, "Is there better hardware
functionality?" led to stack architectures.

Structured Programming m 1967 to 1977

The zeitgeist of the Structured Programming tide combines "use fimctions and loop optimizers well" with "comparing
techniques." Structured programming was the first movement to be big and popular, in part because it had a very clear identity. The
Structured Programming tide combines the following waves: the Stepwise Refinement strategy, the Waterfall model, using functions and
loop optimizers well, the rise of algorithms, and the debates over Goto statements. Structured programming evolved with the
commercialization of mini-computers and the subsequent demand for cheaper software. Also, in the 1960s, applications grew much larger
than ever before.

Use Functions and Loop Optimizers Well: The Structured Programming tide emphasized using the optimizing compilers for
Fortran, Algol, and PL/1 well. By the late 1960s, compilers for function languages could optimize loops, and developers began wondering
how to make the best use of these technologies. The question of how to use functions well, led to the Stepwise Refinement strategy and the
Goto wars. Ever since, we have accepted that we should minimize gotos, though to what degree is a matter-of-individual taste and
"religion."

Comparing Techniques: Intuitively, some software development concepts work better than others. In the middle 1960s, people
began seriously studying the differences between software development technologies. Though, comparisons were applied to many areas of
software development, three streams had a special influence. In programming languages with the infamous Goto debates, in the
development of algorithms with analysis showing that some algorithms were better than others, and in the strategy stream with the
comparison of Stepwise Refinement with Naive strategies, developers made large progress. • The first comparisons were often either
trivial or ridiculous. The Stepwise Refinement strategy is obviously better than the Naive strategy, and Algol is obviously a better tool than
assembly language for writing general purpose code. On the other hand, the comparisons between Algol and Fortran, which consumed so
much effort, now seem spurious. Both languages enabled developers to write much cleaner and smaller programs than assemblers, and the
differences between them have faded in the light of newer languages and technologies.

Algorithms: Algorithms arose at the beginning of the Structured Programming tide. The study of algorithms evolved closely with
the study of functions. We learned that each function should implement one algorithm well. Analysis of algorithms is also a metaphor for
making comparisons in other streams.

It seems natural that the first "Software Engineering" conference in 1968 would coincide with the rise of the Structured
Programming tide. I believe that all of the waves in this tide strove to reach beyond the naive and ad hoe practices of the first two decades_
of software development. The waves in the Structured Programming tide share the same motivation: the quest to fred the right way to
develop and manage software.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 102

Modules - - 1978 to 1988

The zeitgeist of the Module tide combines "groups are neat" with "correctness." Much of the Module tide reacted to
improvements made during the Structured Programming tide. In some ways this tide represents the consolidation of Structured
Programming goals. In other ways this tide is a stepping stone toward objects. Modules represent the shift from individual things to groups
of things. The Module tide combines modules, general-purpose tools, the beginnings of programming environments, the Module
Decomposition strategy, correctness, Abstract Data Types, and the debates over Ada. The Module tide was a step on the way from
functions to objects, because data was still not the equal of functions. This wave began with the start of the PC era and the increasing need
for productivity. In the late 1970s and 1980s, software engineering began to address huge problems, such as the Strategic Defense
Initiative.

Groups are Neat: Groups sprouted in every possible way. Abstract data types are groups of algorithms, modules are groups of
functions, and programs are groups of modules. Developers need more than one compiler and one editor, they need a whole suite of tools.
Pamas even argued that applications are groups of programs.

Correctness: In the 1970s, we moved from the notion of correct functions to correct programs, partly as a matter of scaling up,
and partly as a reaction to Structured Programming and Sotiware Engineering. As the meaning of algorithms sank in fully, many people
concluded that programs were just large algorithms, and if algorithms could be correct, why not programs? Researchers interpreted
algorithms as a metaphor and suggested that if developers "do it right," they can and will produce perfect software.

Objects m 1989 to 19997

The zeitgeist of the Object tide combines "iteration" with "objects are neat." The Object tide combines object-oriented
programming languages, global optimizing compilers, the Spiral model, the Sashimi life cycle, the Object-Oriented Design strategy,
domain specific tools, and usability. This tide also took off with graphical user interfaces. It has taken decades for developers to appreciate
the need for objects, in part because functions and modules effectively organize programs up to 50,000 or 100,000 lines of code long and
in part because it needed collaborating changes in other streams.

Iteration: In the middle 1980s, iteration became one of the main themes in Software Engineering. The Spiral model and the
Object-Oriented Design strategy both embody iteration or a sequence of prototypes. Applications for businesses and consumers, such as
word processors and spreadsheets, were rewritten every couple of years. Reusing software over and over became an important goal.

Objects are Neat: The Object tide moved into full swing with the popularization of C++, Objective-C, Eiffel, and the OOPSLA
conferences. People began using objects everywhere. They created object-oriented versions of every language, system, and concept around.
They defined the Object-Oriented Design strategy and object versions of tools, notations, and methodologies. They even rewrote many
algorithm texts in terms of objects.

Graphical User Interfaces: Many people link graphical user interfaces with objects, because we use objects to implement many
graphical user interfaces. In fact, objects do not really do graphical user interfaces very well, but they do organize larger programs well,
which is particularly a problem for programs with graphical user interfaces. Tools such as dialog editors do graphical user interfaces well.

Patterned P r o g r a m m i n g - - 2000? to 20107

Extrapolating out from the previous tides reveals glimpses of the next tide to rise within Software Engineering. It is hard to make
concrete predictions about how the Patterned Programming tide will evolve and we will probably only understand it in retrospect. But I can
make some estimations. I believe that the zeitgeist of the Patterned Programming tide will combine "using objects well" with
"understanding the middle levels." The Patterned Programming tide will combine the technologies: Frameworks and templates, inter-
function optimizers, and patterns; and the concepts: the Chaos model, the Chaos strategy, the Complexity Gap, and the Ongoing nature of
software development. All of these waves show that we are striving to go beyond the object-oriented concepts from the late 1980s and
early 1990s. I also believe that the "Patterned Programming" tide will rise in the late 1990s and fall around 2010 when new ideas,
technologies, and perspectives will address the holes found during this tide.

Using Objects Well: Over the last ten years, we have been adopting object-oriented technologies. We now realize that objects
are not enough, objects have limitations. We must do more than simply use object-oriented languages and tools, we must use objects well.
For example, Liskov and Wing point out some of the limitations of"structural" uses of inheritance and advocate "semantic" or
"behavioral" inheritance. Templates have been added to C++ and Sather to plug holes in the type systems.

Middle Levels: The Chaos model, Chaos strategy, Complexity Gap, Patterns, and templates all focus on the middle levels of a
project. The Chaos model and the Complexity Gap define a multi-level structure and explicitly identify the middle levels as interesting. I
believe that patterns work on all levels, specifically the middle levels, and that frameworks and templates will address issues near the
middle levels of large software development projects.

I call this tide the "Patterned Programming" tide, because patterns seem to be the most widely used (and misused) concept in the
middle 1990s. I suspect that eventually somebody will argue that programs are just large patterns. • A whole tide requires collaborating
changes in many streams. By themselves, patterns cannot define a whole tide. Patterns are not a programming language nor an optimizer,
and they don't define program struclatres. Ironically, Alexander's simple variation on the Stepwise Refinement strategy for applying
patterns is very simple for such a sophisticated concept. He really needs the Chaos strategy. • I also want to suggest a parallel to the
"Structured Programming" tide. I believe that during the Patterned Programming tide, we will strive to use objects well, like we strove to
use functions well during the Structured Programming tide. We are now adding type parameters to objects, like they added type parameters
to functions during the Structured Programming tide.

ACM SIGSOFT

CONCLUSION

Software Engineexin 8 Notes vol 22 no I Januazy 1997 Page 103

SoRware engineering may seem to evolve very-rapidly, with one wave after the next crashing against the shore of contemporary
practice in a seemingly endless storm of change. Yet, when viewed in terms of streams and tides, we can See that the core ideas evolve at a
remarkably steady rate.

The history described in this paper shows that developers, managers, and researchers have made steady progress toward the goal
of creating reliable software productively during the last fifty years. I believe that Software Engineering can only progress so fast. To
improve, we must find the middle of the current perspective and get good at using the current technology, before we can understand its
limitations and how it will affect other streams. To progress to the next tide, all of the streams must progress together. I believe that
Software Engineering will steadily progress and grow for decades to come. For comparison, we can look to the much older fields of physics
and the fine arts that are still progressing after millennia of improvement.

Some streams of software development may stop evolving. For example, I do not know of any interesting complexities beyond
Chaotic, so models may stop evolving in a complexity sense. If models continue to evolve, they will change in a different sense than
complexity. Other streams will continue evolving. I expect that organization and optimization technologies will continue improving for
many decades to come and therefore strategies will have to keep up.

Even though the term "Software Engineering" was first officially used in 1968, we have been addressing the issues of productivity
and quality ever since the first digital computer was built in1945. Of the streams discussed in this paper, half go back to the first decade,
and the rest go back to the second or third decades of software development. In two very real senses, all streams go back to 1945. First, I
could postulate that each stream began with a wave in 1945. I could postulate a Naive model and a Naive strategy that precede the
Waterfall model and the Stepwise Refinement strategy. I could postulate that the first programming environment consisted of pen and
paper and that the first optimization technology was the Null optimiTer. Thus, all streams extend back to the earliest soRware development
projects. Second, all of the improvements made during the last fiRaj years are grounded in our collective experience that began in 1945.
According to the history presented in this paper, we just passed the 50 ~ Anniversary of Software Engineering.

ACKNOWLEDGEMENTS

I want to thank everyone with whom I have discussed the history of Software Engineering or compared two technologies. I
especially want to thank Bear, Charles Crowley, K. C. Cress, Anthony J. Oiancola, Arthur B. Maceabe, Puppydog, Michael Thompson,
Edwin E. Wing, Judith C. E. Wing, Margaret J. Wing, and Stephen P. Wing. I most especially want to thank to Mina Yamashita.

BIBLIOGRAPHY

Christopher Alexander (1979) The Timeless Way of Building, Oxford University Press.
Mark Ardis, Victor Basili, Susan Gerhart, Donald Good, David Gries, Richard Kemmerer, Nancy Leveson, David Musser, Peter

Neumann, and Friedrich yon Henke (1989) Editorial Process Verification, in Communications of the ACM, Volume 32, Number
3, Pages 287 and 288, March 1989, ACM Press.

Robert A. Ballance, Anthony J. Giancola, George F. Luger, and Timothy J. Ross (1994) A Framework-Based Environment for Object-
Oriented Scientific Codes, in Scientific Programming, Volume 2, Pages 111 to 121, John Wiley and Sons.

Henry Bauer (1992) Scientific Literacy and the Myth of the Scientific Method, University of Illinois Press.
W. I. B. Beveridge (1950) The Art of Scientific Investigation, Vintage.
Barry Boehm (1986) A Spiral Model of Software Development and Enhancement, in Software Engineering Notes, Volume 11, Number 4,

Pages 14 to 24, August 1986, ACM Press.
G-rady Booth (1981) Describing Software Desires in Ads, in SIGPLAN Notices, Volume 16, Number 9, Pages 42 to 27, September 1981,

ACM Press.
Grady Booth (1982) Object-Oriented Design, in Ada Letters, Volume 1, Number 3, Pages 64 to 76, March/April 1982, ACM Press.
Grady Booeh (1986) Object-Oriented Development, in Transactions in Software Engineering, Volume 12, Number 2, Pages 211 to 221,

February 1986, IEEE Press.
G-rady Booeh (1994) Object-OrientedAna!ysis and Design, Benjamin Cummings.
Alan Bowness (1989) The Conditions of Success, Thames and Hudson.
Frederick P. Brooks, Jr. (1995) Th.e Mythical Man-Month after ~0 years, in The MythicalMan-Month, 20 th Anniversary Edition, Addison

Wesley.
Peter Coad and Edward Yourdon (1991) Object-Oriented Design, Yourdon Press.
H. Floris Cohen (1994) The Scientific Revolution: A Historiographical Inquiry, University of Chicago Press.
O.-J. Dalai, E. W. Dijkstra, and C. A. R. Hoare (1972) Structured Programming, Academic Press.
Jeffrey Dean, Craig Chambers, and David Grove (1995) Selective Specialization for Objeet-Oldented Lanmmges, in SIGPLAN Notices,

Volume 30, Number 6, Pages 93 to 102, June 1995, ACM Press.
Peter DeGraee and Leslie Hulet Stahl (1990) Wicked Problems, Righteous Solutions, Yourdon Press.
R. DeMillo, IL Lipton, and A. Perlis (1979) Social Processes and Proofs of Theorems and Pro~ams, in Communications of the ACM,

Volume 22, Number 5, Pages 271 to 180, May 1979, ACM Press.

ACM SIGSOFT Software Engineering Notes vol 22 no 1 January 1997 Page 104

Edsger W. Dijkstra, Goto Statement Considered Harmful, in Communications of the ACM, Volume 11, Number 3, Pages 147 to 148,
March 1968, ACM Press.

Eugene S. Ferguson (1992) Engineering and the Mind's Eye, MIT Press.
James H. Fetzer (1988) Program Verification: The Very Idea, in Communications of the ACM, Volume 31, Number 9, Pages 1048 to

1063, September 1988, ACM Press.
Richard Ganthier and Stephen Pont (1970) Designing Systems Programs, Prentice Hall.
Stephen C. Johnson and Cleve Moler (1994) Compiling Matlab, in USENIX Very High Level Languages Symposium Proceedings, Pages

119 to 127, October 1994, USENIX Association.
Donald E. Knuth (1968) The Art of Computer Programming, 3 Volumes, Addison Wesley.
Donald E. Knuth (1974) Structured Programming with Goto Statements, in Computing Surveys, Volume 6, Pages 261 to 301, December

1974, ACM Press.
Peter Kokol, Janez Brest, and Viljem Zumer (1996) Software Complexity - An Alternative View, in SIGPLANNotices, Volume 31,

Number 2, Pages 35 to 41, February 1996.
Thomas S. Kulm (1970) The Structure of the Scientific Revolutions, University of Chicago Press.
Barbara H. Liskov and Jeanette M. Wing (1995) A Behavioral Notion of Subtyping, in Transactions on Programming Languages and

Systems, Volume 16, Number 6, Pages 1811 to 1841, November 1994, ACM Press.
Benoit B. Mandelbrot (1983) The Fractal Geometry of Nature, Freeman.
Harlan D. Mills (1971) Top-Down Programming in Large Systems, in Debugging Techniques in Large Systems, Randall Rustin editor,

Prentice Hall.
Dave Olson (1993) Exploiting Chaos: Cashing in on the Realities of Software DevelOpment, Van Nostrand Reinhold.
Scott P. Overmyer (1990) The Impact of DoD-Std-2167A on Iterative Design Methodologies: Help or Hinder?,-ia Software Engineering

Notes, Volume 15, Number 5, Pages 50 to 57, October 1990, ACM Press.
David Lorge Parnas (1972) Onthe Criteria to Be Used in Decomposing Systems into Modules, in Communications of the ACM, Volume

15, Number 12, Pages 1053 to 1058, December 1972, ACM Press.
David Lorge Pamas (1976) On the Desima and Development of Software Families, in Transactions on Software Engineering, Volume 2,

Number 1, Pages 1 to 9, January 1976, IEEE Press.
David Lorge Parnas, Paul C. Clements, and David M. Weiss (1985), The Modular Structure of Complex Systems, in Transactions on

Software Engineering, Volume 11, Number 3, Pages 259 to 266, March 1985, IEEE Press.
David Lorge Parnas and Paul C. Clements (1986) A Rational Design Process: How and Why to Fake It, in Transactions on Software

Engineering, Volume 12, Number 2, Pages 251 to 257, February 1986, IEEE Press.
L. B. S. Raccoon (1995) The Chaos Model and the Chaos Life Cycle, in Software Engineering Notes, Volume 20, Number 1, Pages 55 to

66, January 1995, ACM Press.
L. B. S. Raccoon'(1995) The Complexity Gap, in Software Engineering Notes, Volume 20, Number 3, Pages 37 to 44, July 1995, ACM

Press.
L. B. S. Raccoon (1995) The Chaos Strategy, in Software Engineering Notes, Volume 20, Number 5, Pages 40 to 47, ACM Press.
L. B. S. Raccoon (1996) A Leamin~ Curve Primer for Software Engineers, in Software Engineering Notes, Volume 21, Number 1, Pages

77 to 86, January 1996, ACM Press.
W. Royce (1970) Managing the Development of Large Software Systems: Concepts, WESCON Proceeding (Aug.).
Hirotaka Takeuchi and Ikujiro Nonaka (1986) The New New Product Development Game, Harvard Business Review, Volume 64,

Number l, Pages 137 to 146, January-February 1986.
Robert Endre Tarj an (1983) Data Structures and Network Algorithms, SIAM.
Will Tracz (1995) Confessions ofa Used Program Salesman, Addison Wesley.
Doris B. Wallace and Howard E. Grnber (1989) Creative People at Work, Oxford University Press.
Peter Wegner (1976) Pro m'amming Lanmmges---The First 25 Years, in Transactions on Computers, Volume 25, Number 12, Pages 1207

to 1225, December 1976, IEEE Press.
Maurice V. Wilkes, David J. Wheeler, and Stanley Gill (1951) The Preparation of Programs for an Electronic Digital Computer,

Addison Wesley.

