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INTRODUCTION 

In this paper, I describe a new outlook on the history of Software Engineering. I portray large-scale structures within Software 
Engineering to give a better understanding of the flow of history. I use these large-scale structures to reveal the steady, ongoing evolution of 
concepts, and show how they relate to the myriad whorls and eddies of change. I also have four smaller, more specific purposes in writing 
this paper. 

First, I want to point out that old ideas do not die. In The Mythical Man-Month after 20 Years, Brooks claims "the Waterfall 
Model is Wrong." But if the Waterfall model were wrong, we would stop arguing over it. Though the Waterfall model may not describe the 
whole truth, it describes an interesting structure that occurs in many well-defined projects and it will continue to describe this truth for a 
long time to come. I expect the Waterfall model will live on for the next one hundred years and more. 

Second, I want to show that the Chaos model, Chaos life cycle, Complexity Gap, and Chaos strategy are part of the natural 
evolution of Sottware Engineering. The Chaos model and strategy supersede, but do not contradict, the Waterfall and Spiral models, and 
the Stepwise Refinement strategy. They are more up to date because they express contemporary issues more effectively, and fit our 
contemporary situations better. The Chaos model, life cycle, and strategy are equally as important, but not better than, other concepts. 

Third, I compare the Chaos model, life cycle, and strategy to other models, life cycles, and strategies. This paper can be 
considered a comparison of the ideas presented in my papers about chaos with other ideas in the field. I avoided comparisons in my other 
papers because I wanted to define those ideas in their own terms and the comparisons did not further the new ideas. 
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Fourth, I make a few predictions about the next ten years of Software Engineering. The large-scale structures described in this 
history provide a stronger base for understanding how software engineering will evolve in the future. 

This paper is laid out as follows. In the first section, I use the flow of water as a metaphor to describe the flow of progress in 
Software Engineering. I use the Water metaphor to show some of the structures within Software Engineering. The current work builds on 
top of the historical work, and future work will build on top of current work. In the remaining sections, I describe the waves, streams, and 
tides that portray the evolution of concepts and technologies in Software Engineering. 

A WATER METAPHOR OF THE EVOLUTION OF SOFTWARE ENGINEERING 

In this section, I compare the flow of water with the flow of progress in Software Engineering. I use waves, streams, and tides to 
describe units of progress. Waves represent individual technical developments. Streams represent sequences of waves or the evolution of 
technical developments on one theme. Tides represent the simultaneous interest in a group of different technologies, or a generation of 
technologies. The Water metaphor shows that software development does not advance steadily, but progresses like the slow ebb and flow 
of a tide. 

The Wave Shape of Interest in a Technical Development 

Each technical development wave evolves through four stages of 
interest: innovation, growth, maturity, and convention, as shown by the 
wave in Figure 1. Waves represent the level of interest in a technical 
development by the whole community of software engineers. Waves are 
defined in terms of the level of interest, rather than in terms of the amount 
of work because the two terms represent distinct concepts. For example, in 
the 1990s, we still spend fortunes to write and maintain Cobol and 
Assembler programs, even though few people consider either technology 
interesting. Waves represent the level of interest by the whole field, rather 
than the personal convictions of any individual. 

Innovation: During the Innovation stage, a neat, new technical 
development slowly acquires a group of supporters. The technology may 
require ten or more years to become fully developed and widely Understood. 
It takes a while to spread the word about any new technical development. 
Some technologies, such as Fortran, took only five or ten years to become 
popular. Others, such as Object-oriented programming, took more than 
twenty years to catch on. During the Innovation stage, businesses may take 
the new technology seriously, but are not yet willing spend money to 
acquire new tools or to train their employees. 

t 
10 to ~ 5 years---~ 

1950s 

Time 

1973 1980 1988 

Figure 1: The Wave of Interest in Modules. 

Growth and Maturity: During the Growth and Maturity stages we consider the technical development important. In the Growth 
stage, the technology has been proved out, and it becomes increasingly popular as supporters emphasize its possibilities. In the Maturity 
stage, interest in the technology levels off, as uniform enthusiasm gives way to a balanced understanding. We finally push the technical 
development to its limits and find its flaws. We may perceive a backlash against the technology, because detractors emphasize its 
limitations. Popularity wanes and the technical development begins to bum out. The combined Growth and Maturity stages often last ten to 
fifteen years. During Growth and Maturity stages, we often confuse technical developments with the projects that implement them. Thus 
during the 1960s, we did not speak of"function languages," but rather of"Fortran" and "Algol." During the Growth and Maturity stages, 
businesses will spend money to acquire new tools and train employees to use the technology. 

Convention: During the Convention stage, everyone in the field assumes that the core idea of the technical development is valid 
and the core idea becomes part of the genre or the background information. We know the limitations of the technical development and we 
address them by moving on and developing new technologies. Modules moved into the Convention stage in 1988, when developers 
realized that modules do not give much control over allocation and deallocation of resources or the ability to create multiple instances of 
modules. We are now addressing these issues with objects. As the technical development becomes more conventional, we notice it less and 
less. The embodying projects die out while the technical development lives on. Thus, the languages Fortran 2 and Algol, which originally 
embodied functions, have nearly died, even though functions live on as a vital part of alrnost all contemporary languages. During the 
Convention stage, businesses often require that employees can proficiently use the technology. 

Extending the Water Metaphor (Structures in the Flow) 

In this section, I portray large structures within the flow of progress in Software Engineering. Waves combine sequentially to form 
streams and combine side-by-side to form tides. 

Streams: Streams are sequences of waves that represent the evolution of one theme. Waves in a given stream share a focus on a 
specific problem. Each wave picks up where the last wave leaves off. For example, the Organization stream describes the evolution of 
organization structures. Figure 2 shows the sequence of organization waves, from the Statement "wave" to the Function "wave" to the 
Module "wave" to the Object "'wave" to the Framework "wave." 
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In this paper, I focus on eleven loosely interdependent streams. Some streams are technical, others are conceptual. The streams 
are not necessarily equal in value or force. Some streams are more important than others. We control some streams, such as how we view 
process. Other streams are out of our control, such as the economics of hardware. 

Streams can be very closely related. Sometimes one stream divides into two related streams. When the Waterfall model was 
introduced, we thought of the terms "model" and "life cycle" as synonyms. I distinguish between these terms because I distinguish between 
the structure of a project and the sequence of events within a project, respectively. Sometimes one stream strongly influences another. I 
believe that strategies invariably encourage developers to use current technologies well, so as technologies change, strategies need to keep 
up. I also argue that models and strategies share a symbiotic relationship. 

Tides: Tides are a confluence of many waves that share the same zeitgeist (spirit of the times). For example, the Object tide 
reflects the increasing importance of object-oriented languages and tools, as well as many collaborating changes, including usability, the 
Object-Oriented Design strategy, Booch's distinction between the Macro-process and the Micro-process, and the emphasis placed on the 
design of larger and more sophisticated systems, particularly ones with graphical user interfaces. All of these changes together represent a 
complete change of worldview. Tides represent popular movements. Each tide overwhelms the field as it comes in, bringing a new set of 
issues to the surface, and then recedes, leaving old issues scattered or buried. Tides seldom match any particular wave exactly. 

In this paper, I focus on six tides. The two best known tides are the Structured Programming tide which lasted from 1967 to 1978 
and the Object tide which I expect will last from 1989 to about 2000. 

I believe that tides are often related in pairs: a technological change over ten years often inspires a conceptual change in the 
following ten years. During the first tide of a pair we learn to use a new technology. During the second tide of the pair we learn to use the 
technology well. For example, the Function tide emphasizes using functions while the Structured Programming tide emphasizes using 
functions well. And, the Object tide emphasizes using objects while the Patterned Programming tide will emphasize using objects well. 

Related Concepts of Scientific and Artistic Progress 

The Water metaphor closely resembles the model of artistic progress described by Bowness in The Conditions of  Success. 
Bowness points out that successful artists, such as Hockney and Manet, took five or ten years to earn the acceptance of their peers and 
about twenty five years to earn the full acceptance of the art community. And further, once these artists achieve their breakthroughs, they 
have "ten (or even five) good years" when they make their greatest impact on the field. Afterwards, their careers gradually taper off, when 
they do good work, but no longer influence the field as much. 

The Water metaphor also resembles the models of scientific progress described by Bauer, Beveridge, Cohen, Ferguson, and 
Kuhn. Cohen argues that the "scientific revolution" never happened, that scientific progress began long before 1600 and has accelerated 
steadily ever since. Bauer and Ferguson emphasize slow, long-term progress, arguing that many technical developments follow decades (or 
even centuries) of steady improvement. Beveridge points out that many important scientific observations precede the "official" scientific 
discovery by one or more decades. Kuhn emphasizes rapid, short-term progress, arguing that communities undergo revolutions, called 
"paradigm shifts," when they adopt new technologies. 

I believe the Water metaphor encompasses all of these points of view. Like Cohen, I believe that a "software engineering 
revolution" never occurred, because we addressed the issues of productivity and quality decades before 1968. Most streams in software 
engineering began long ago. Like Bauer, Beveridge, and Ferguson, I believe that most technical developments follow years of evolution. 
The waves and tides show how technologies may undergo decades of improvement, then enjoy ten to fifteen years of popularity, and then 
fade away slowly. Like Kuhn, I believe that technologies sometimes appear revolutionary. Kuhn's revolution corresponds to the rapid 
growth of interest at the transition from the Innovation stage to the Growth stage. 

Which scale is best? I believe that each scale reveals a part of the truth, which is a very complex interplay of all scales. While all 
of these scales matter, I want to emphasize the medium- and long-term progress. 

Dating a Technical Development 

Dating the rise and fall of a technology is almost always difficult. Identifying when a technology shifts from the Innovation to the 
Growth stage is particularly tricky. If we are lucky, we may know the date of the first publication or of a specific event. Thus, we could date 
the rise of Object-oriented programming from the release of Simula in 1967, the release of Smalltalk-80 in 1980, or the OOPSLA-1 
conference in 1986. But, even the most popular events may only foreshadow a surge of interest that takes years to catch on. Perhaps it is 
more accurate to date a technology from some period of time after an event, say three years, to allow it time to catch on. The trick is to 
distinguish between when an event occurs and when it matters. 

In this paper, I strive to consistently choose dates that bracket the Growth and Maturity stages. I strive to date each technical 
development from its upswing to the upswing of the next technical development. Thus, I date the Ftmction-oriented programming wave 
from 1958, one or two years after the first Fortran compilers, to 1973, when modules took over. And, I date the Object-oriented 
programming wave from 1988, a couple years after the OOPSLA- 1 conference and more than twenty years after Simula. These dates are 
my current best estimate. 
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Table 1: Fifty Years of Progress in Software En ;ineering (Approximate) 
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ELEVEN STREAMS 

.In this section, I describe the eleven streams that most influenced the Chaos model, life cycle, and strategy, even though they do 
not exactly define Software Engineering. I exclude management, estimation, and testing streams, as they did not influence the Chaos model 
and Chaos life cycle directly. (I invite others to write about these subjects.) I include hardware economics, organization, and optimization 
streams, because they strongly influence software engineering, even though depending on your point of view they more properly belong 
within another branch of computer science. I exclude hardware concerns, such as MIPS and memory, since many people have written 
about them. 

Table 1 details the progress of these eleven streams. In the table, cells represent waves, rows represent streams, columns 
represent tides, and the whole table represents the flow of progress in Software Engineering. The first five streams denote technologies and 
the last six streams denote concepts. The figures throughout this text refer to entries in this table. 

Hardware Economics 

Hardware economics drives software economics. Each generation of hardware makes computers affordable to a new class of 
users and changes the economics for programmers. I define hardware waves in terms of user perception and economics, rather than 
electronic technologies which users may not understand or appreciate. 

Research Mainframes - -  1945 to 1955: In the 1940s and early 1950s computer hardware was developed within research 
projects. These projects built one-of-a-kind hardware and emphasized research. The programs written from 1945 to 1955 reflect the issues 
that stemmed from research projects: experimental mathematics, control, and business systems. Early programs solved puzzles or research 
problems in an ad hoe way. Developers were learning what hardware and software could do. Researchers placed little emphasis on 
productivity, as the software projects were sponsored as an outgrowth of very expensive hardware development projects. 

Commercial Mainframes - -  1956 to 1966: During the 1950s, with the commercialization of mainframes, businesses began to 
emphasize productivity. Mainframes cost millions of dollars, but we recognized that developers were now business employees. To improve 
productivity, developers created macro-languages, speed coding, and Fortran. But, given the cost of a mainframe and the large support staff 
needed to run the mainframe, businesses could afford to write their own custom applications for a small portion of their computer budget. 

Commercial Mini-Computers - -  1967 to 1977: In the 1960s, mini-computers became popular, costing upwards of 50 
thousand dollars. For the first time, small businesses could afford their own computers, and the need for software development productivity 
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increased because businesses could no longer hide software development staff in the hardware budget. The quest for more productive 
software development coincided with the Structured Programming movement of the late 1960s and early 1970s. Compiled languages, such 
as Cobol and PL/1 became increasingly popular. This wave launched large-scale commercial software, because the owners of rnini- 
computers wanted to purchase software rather than write software. Commercial software companies spread development costs over tens or 
hundreds of copies of a program. 

Personal Computers - -  1978 to 2000?: Beginning in the early 1980s, a single software developer's annual salary cost much 
more than one computer. Personal computers cost thousands of dollars. Thus, the personal computer exaggerated the economics of 
software development even further. The decreased operating margins forced a completely different way to finance, build, and sell software 
which led to the current mass markets for consumer and business software. Commercial software companies spread development costs 
over thousands or millions of copies of a program. 

Internet - -  2000? to ?: In the late 1990s, the Internet, internationalization, ubiquitous computing, and other economic forces are 
coming to bear. The Interact provides inexpensive access to tremendous computing resources. Developers will increasingly create, sell, 
and distribute software directly to consuraers, without the overhead of packaging and corporate distribution channels. The Intemet will 
encourage even greater productivity from developers as margins drop even further. 

Organization Technologies 

Organization technologies are motivated by our need to organize 
larger and larger programs. In Object-OrientedAnalysis andDesign, 
Booch describes the evolution of organization technologies in terms of the 
"program topology" or the relationship between data and code. To some 
extent, organization defines the relationship between function and data, so it 
is really a name space problem. But organization affects the way that we 
think about programs. Figure 2 shows the evolution of the Organization 
stream from the Statement wave to the Function wave to the Module wave 
to the Object wave to the Framework wave. 

Statement-Oriented Programming - -  1945 to 1957: 
Statement-oriented programming began when programs imitated the step- 
by-step operation of hardware. Statement languages include machine code 
and assembly languages. Assembly languages are a big improvement over 
machine code because Assembly languages eliminate much, ffnot all, detail 
about the machine's bit patterns, much of which is arbitrary. According to 
Booeh, in statement-oriented programming all data is global. All statements 
can access all dafa. • We could say that assemblers are expression 
compilers. In fact, assemblers only compile parts of an expression, but they 

1945 
Time 
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I 

1988 2003? 

Figure 2: The Organization Stream. 

point to compiling larger expressions, such as the statements found in Fortran 1. Using Assemblers today is more a matter of habit than 
intent, because assemblers do not define any new ideas and industry shows very little interest in using them. Statement-oriented languages 
have continued evolving into general-purpose languages like APL and J and command languages like Tel. The end of this wave became 
apparent when developers began using macros and Fortran extensively. 

Function-Oriented Programming - -  1958 to 1972: Function-oriented programming began in the 1950s with Fortran. Fortran 
had an assembler-like syntax for statements, but extended organization to the function level by adding a special syntax for functions. A 
function wraps a group of statements together to express one idea more completely. The syntax and implementation of functions was later 
refined in Algol and Pascal. According to Booth, function-oriented languages distinguish between global andioeal data and enable 
programmers to limit access to local data. • I date the Function wave from 1958 when Algol duplicated Fortran's functions. Subroutines 
were used in the earliest days of computing. In The Preparation of Programs for a Digital Computer from 1951, Wilkes, Wheeler, and 
Gill describe dividing programs into subroutines. Functions remain vital parts of nearly,all contemporary languages. Developers still write 
lots of code in Function languages or in Object languages using a function-oriented programming style. 

Module-Oriented P r o g r a m m i n g - -  1973 to 1987: People noticed Module-oriented programming in the early 1970s, when 
developers began asking, "how should groups of functions work together?" The goal of modules is to help functions to cooperate with each 
other. The Module wave began with languages like C, which used the C preprocessor and some innovative header file conventions'to 
create modules. C combines an Algol-like syntax for functions with a macro preprocessor for gluing modules together, enabling developer, 
to build programs out of modules. Other module languages, including Alphard, CLU, Modula, and Ada, improved the syntax and error 
checking between modules, but did not significantly improve the functionality beyond that provided by C. Unfortunatdy, the ANSI C 
committee took fu~een years to bring it up to the standards set by Ada, CLU, and Modula and fix the problems with C's type system. 
According to Booth, Module-oriented languages distinguish between global, module, and function data, and enable programmers to limit 
the sharing of information between functions. • The roots of modules go back to the earliest "assemblers" and linkers from around 1950, 
Fortran from the middle 1950s, and PL/1 from the middle 1960s. Unfortunately, these early tools provided little help for module design. 
Early linkers were oblivious to the meanings and types of names. The Fortran common block does a poor job of sharing data, because 
developers must retype all of the declarations in each module, risking mistakes. During the 1950s and 1960s, developers used modules to 
optimize compilation rather than to organize programs. 
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Object-Oriented Programming-- 1988 to 2002?: Object-oriented programming helps functions and data to work together 
very closely. Objects help developers to control the allocation, deaUocation, initialization, and especially the management of multiple 
instances of state variables and data structures, much more effectively than modules. According to Booch, Object-oriented languages 
distinguish between global, module, object, and function data. Object-oriented programming languages refine the sharing of information 
between functions, by shifting control from modules to objects. • Object-oriented technologies were developed shortly after functions, 
specifically, Simula in the 1960s and Smalltalk in the 1970s. Simula and Smalltalk influenced many of the programming languages of the 
1970s and 1980s, even though objects did not truly succeed until after 1988. Objects have now reached the Maturity stage, because we are 
beginning to criticize their lack of emphasis on semantics. We are making type-safe libraries possible by using templates to plug the holes 
in the type system. I expect that objects will remain important concepts for many decades to come. 

Framework-Oriented Programming - -  2003? to ?: Templates and frameworks help objects work together. They can be 
thought of as type-safe macros or as code generators for objects. In many ways, templates and frameworks apply the data abstraction 
mechanisms from CLU, Alphard, and Ada to objects. To simplify the distinction between them, templates are language constructs and 
frameworks are tool or programming environment constructs. Balance defines frameworks indirectly with the statement, "frameworks are 
to objects as parents are to unruly children." In A Framework-Based Environment for Object-Oriented Scientific Codes, Balance, 
Giancola, Luger, and Ross describe frameworks in more detail. 

Optimizers 

Optimizers matter because they free developers from the need to deal with specific small details to concentrate on larger issues, 
so that developers can do more important things. Optimizers are more important than software engineers may realize. I believe that, for 
good or bad, developers feel responsible for the efficiency for all of the code that they produce. Developers take responsibility for the 
optimizer's shortcomings and all code that the compiler does not generate well. This means that before the statement optimizer, developers 
felt obliged to take responsibility for the assembly code. They felt it necessary to specify the gotos, until optimizers could handle loops and 
basic blocks. The point is not to forbid access to small details, but to free developers from dealing with unimportant small details. Each 
transition in optimization technology moves more functionality into the optimizers. 

Statement Optimizers: Early Fortran compilers began with statement optimizers. The first compilers optimized each statement 
independently, one at a time. Statement optimizers allowed developers to ignore the implementation of individual statements, but 
developers still had to worry about the flow between statements. 

Loop Optimizers: In the early 1960s, the Fortran community developed loop and basic block optimization techniques, to assure 
Fortran's continued reputation as the most efficient language and to stay ahead of the compilers for Algol and PL/1. Compiler writers 
learned how to optimize loops using "reduction of strength" transformations, which required a thorough understanding of"while" and "if '  
statements and basic blocks. Developers no longer had to worry about gotos. 

Function Optimizers: Full function optimization was part of the on-going improvement in compiler technology. But it wasn't 
until the middle 1980s that "global optimizing" compilers were well understood, and it wasn't until the 1990s that global optimizing 
compilers became widely available from commercial sources. Developers no longer had to worry about the code within a function. 

Inter=Function Optimizers: Inter-function optimizers that can analyze many functions at once have been under development for 
many years. Specific techniques range from improving data flow analysis to sharing one activation record among several functions to 
inlining functions selectively to specializing function calls. However, inter-function optimizers have not yet become part of off-the-sheLf 
commercial compilers. 

Programming Environments 

Programming environments are the tool sets that we use to improve the productivity of Software Engineers. We have always had 
programming environments, but some are more useful than others. Now, software engineers assume that a programming environment is a 
rich tool set. But, note that even today, most tools still do not work together as well as they should and even the current crop of tools hardly 
encompasses the full scope of what developers do. 

Compilers and Editors: The pioneering tool sets of the 1950s included assemblers, compilers, linkers to combine programs 
with libraries, and editors. Card punches are "card-oriented" editors. At the time, compilers and editors encompassed everything that we 
thought developers did. 

General-Purpose Tools: The concept of "programming environment" really got going when the Unix operating system provided 
tools that went well beyond basic compilers and editors. Unix supported many more of the activities that all developers do: writing 
documentation and specifications, coding, testing, and communicating with others. Unix developers wrote the tools: vi, grep, make, cc, rcs, 
database tools, scripting tools, document processing tools, and mail. Typically each tool implemented one algorithm robustly and provided 
an interface to read one or a few representations of data from files. In other words, these tools raised algorithms to the level of the user, and 
pipes enabled users to combine algorithms together from the shell. "Make" is another sophisticated tool for combining programs together. 
Enthusiasm for the Unix operating system proves that developers both want and need a full set of tools to be productive. The Unix 
operating system supports the C programming language and other programming environments support the Lisp and Ada programming 
languages. 

Domain-Specific Tools: In the last few years, we have developed tools oriented toward the special needs of specific groups of 
developers. As developers have specialized into groups that address user interfaces, testing, embedded systems, design, and other issues, 
they have acquired their own tools. User interface groups use interface builders and dialog editors. Testing groups use scripting tools, test 
case generators, and error tracking databases. Designers use dataflow diagrams and entity relationship editors. Another recent development 
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is domain-specific languages, such as Perl for scripting and Tel for embedding. Ad hoe versions of these tools appeared decades ago, but 
we are now getting them right. 

Conceptual Structures 

Conceptual structures describe the relationship between specific problems and specific solutions. Conceptual structures are the 
units of programming analysis and description that we use to catalog our concepts. Conceptual structures exist independently of both 
applications and technologies. Algorithms, abstract data types, and patterns all document specific solutions to specific problems. 

Algorithms: Algorithms describe specific solutions to specific low-level problems. Because of their close ties to analysis, 
algorithms emphasize low-level details. Knuth was the first to organize and analyze them consistently. The Art of Computer Programming 
was a break-through because, for the first time, developers could use a book of algorithms like chefs use a book of recipes. • Algorithms 
ex'tend back to the middle ages, and became increasingly important in the late nineteenth and early twentieth centuries. Knuth didn't invent 
algorithms, but he was the first to show how important the), are to computer science. 

Abstract Data Types: In the 1970s, theorists realized that groups of algorithms work together to implement larger concepts. 
Few algorithms work in isolation. For example, a search tree abstract data type combines algorithms that insert one element, insert many 
elements, delete one element, find one element, combine two trees, and so forth. Abstract Data Types enable researchers to analyze the 
behavior of sequences of operations, notably Amortized Complexity. Tarjan and Sleator showed that any sequence of Union-Find and 
Splay Tree operations is efficient despite the possible inefficiencies of any one operation. Because of their close ties to analysis, Abstract 
Data Types emphasize low-level details. • The algorithms that manipulate data structures were developed in groups from the earliest days. 

Patterns: The most recent development in conceptual structures is patterns. Developers are now applying Alexander's ideas 
about patterns to soRware design. Patterns express conceptual structures from all levels of a project, including the problems defined by 
applications, the solutions defined by technologies, and everything in between. Some patterns fit mid-way betweetra problem and a 
solution, while other patterns focus more on the problem or more on the solution. Because analysis is not the primary use for patterns, 
patterns are not necessarily tied to low-level details, and so they help to transition away from the underlying technologies. Patterns are 
particularly important because they describe how middle- and upper-level concepts work together. • In 1968, Knuth used English to 
describe his algorithms. Knuth's use of stylized English presaged the style of patterns by twenty five years. But until patterns became 
popular, describing algorithms in English, rather than pseudo-code, seemed old-fashioned. We can think of algorithms and abstract data 
types as low-level patterns. 

Program Ideals 

Program ideals are the goals or properties of programs that we 
strive to achieve in our code. In one sense, program ideals are the 
properties that m.ake a program elegant, well-designed, well-implemented, 
and salable, and therefore make the program worth writing. Ideals are still 
changing becausc both developers and uscrs arc still learning what 
computers can and should do. Figure 3 shows the evolution from Useful to 
Documented to Correct to Usable. 

Use fu l - -  1945 to 1960: In the 1940s mad 1950s, developers 
used software to make computers useful. Research often focused on what 
hardware could accomplish. In today's terms, projects solved very small 
problems. The programs were often considered less important than the 
hardware. Programming made the machines useful to mathematicians, 
scientists, and accountants. 

Documented - -  1961 to 1973: With the first real 
oommergialization of software, programs needed to be documented to be 
salable. Many applications were big, ad hoc, and ugly, but if they were 
documented they ~u ld  be sold. This was the era of OS/360 and huge 
manuals. In fact the term "'documented" was often interpreted as "'well- 
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Figure 3: The Program Ideal Stream. 

planned" and "deliberate." • In the 1990s, some companies still ship enormous manuals on CD-ROM to impress and befuddle their users. 
Though increasingly, companies strive to minimize the documentation of a program, which often contains errors and overly constrains 
changes to the functionality of the program. 

Correct - -  1974 to 1986: In the 1970s, people realized that documentation muSt not only exist, it must also be meaningful and 
correct. This means both that documentation must aecurately describe the program and that the program must live up to the documentation. 
The documentation of the time was occasionally wrong, but more often it was ambiguous or incomplete. Consider the old jokes about 
IBM's "Great Oral Tradition." Many researchers advocated formally proving all programs correot. • In Pro_m'amming Lan_maages--The 
First 25 Years, Wegner points out that the Correctness movement began in the middle 1960s with papers by McCarthy, Naur, Dijkstra, 
Floyd, and others. Correctness grew to dominate the ideals of the late 1970s and early 1980s. The Correctness wave began to wane in the 
middle 1980s when DeMillo, Lipton, and Perlis's argument that proofs reflect social processes rather than absolute truths caught on. The 
Correctness movement never accepted that a program (such as a word processor) with many minor correctness flaws can provide much 
more benefit to users than no program at all and it never dealt with the rapid life cycles and iterative nature of the consumer software 
industry. The movement then self-deslructed after a controversial editorial to the Communications of the ACM in March 1989 about the 
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dangers of criticizing correctness. The ensuing backlash showed that political appeals cannot stay the decline of a wave. The correctness 
issue continues on today within a small sub-culture, addressing life-critical applications such as pace makers and bomb triggers. 

Usable--  1987 to ?: In the 1980s, developers realized that users do not care about the relationship between a specification and 
its implementation or "correctness." Users want meaningful functionality. Users just want to get their work done. Developers admitted that 
notall computer users are experts or ever will be. This led developers to admit that naive and casual users won't do difficult tasks and even 
experts may not make full use of a program with a poor user interface. • In the 1970s, usability started offat Xerox. In the middle 1980s, 
the Personal Computer industry (led by Apple) picked up the concept of usability, and graphical user interfaces made it out of the lab. 
Software vendors learned that sales depend on keeping users happy. 

Models 

Models describe the structures within software development projects. Models matter because we use them as the banners of the 
various camps campaigning to improve Software Engineering. Figure 4 shows the progression of structures from the Waterfall model to 
the Spiral model to the Chaos model. 

Waterfall Model: The Waterfall Model, described in Manau, ing 
the Development of Large Software Systems by Royce, is the mother of all 
models and it describes simple projects well. The Waterfall model 
describes software development as a fixed sequence of discrete, irrevocable 
steps, Programmers should first design everything, then implement 
everything, and so on. The Waterfall model emphasizes one-shot planning. 
• We interpret the Waterfall model to suggest that problems encountered 
early in a project will only get worse and that to improve the process, we 
should improve the front end parts of the process most. One criticism is that 
the Waterfall model fails to account for change and other evolutionary 
aspects of projects, such as debugging and maintenance. It also fails to 
guide large, complex, or exploratory projects. • Royce was the first to 
define a specific structure for software development. 

Spiral Model: Boehm described the Spiral model in A Spiral 
Model of.Software Development and Enhancement. The Spiral model says, 
"build a prototype using the Waterfall model, then revise the objective as 
necessary, and build a new prototype." Essentially a project is a sequence 
of prototypes, each of which refines the previous prototype. Since each 

Figure 4: Three Models. 

prototype develops according to the Waterfall model, software development projects resemble a loop of Waterfalls. The Spiral model 
emphasizes iterative planning. This iterative structure can accommodate more complex, ambiguous, and misunderstood problems. • In his 
paper on the Waterfall model, Royce remarked that projects are iterative, but he did not develop the reasons why iteration matters. Boehm 
was the first to explain how and why the different iterations work together. 

Chaos Model: Raccoon described the Chaos model in The Chaos 
Model and the Chaos Life Cycle. The Chaos model combines a simple 
problem-solving loop with fractals to describe the many levels of a complex 
project. All levels matter equally. So, software development resembles a 
chaotic cascade of Waterfalls. The chaotic complexity allows it to reflect 
the behavior of the most complex and misunderstood problems. The Chaos 
model emphasizes planning throughout the process. Raccoon interprets the 
Chaos model to suggest that software development can be very 
unpredictable. • Prior to 1995, researchers proposed many recursive 
models. In the early 1980s, I recall hearing several speakers at technical 
conferences comment that the Waterfall model could be applied recursively 
to parts of a project. In The Impact of DoD-Std-2167A on Iterative Design 
M.e.thogl_ ologies: Help or Hinder? from 1990, Overmyer describes many 
recursive models. In 1993, Olson argued that because of feedback, software 
development is chaotic, but he did not describe a specific model. And, in 
1996, Kokol, Brest and Zumer discuss chaotic soft'ware complexity. Before 
the Chaos model, nobody carried the recursion down to the "one line of 
code" level or interpreted the recursion level-by-level. 

Life Cycles 

Life cycles describe the sequence of events within a project. 
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Figure 5: Three Life Cycles. 
These diagrams show the percent of effort devoted to 
Requirements analysis, Design, Implementation, and 

Maintenance phases as a function of time. 

Figure 5 shows the evolution from the Waterfall life cycle to the Sashimi life cycle to the Chaos life cycle. 
Waterfall Life Cycle: In Managing the Development of Large Software Systems, Royce makes no distinction between the 

Waterfall life cycle and the Waterfall model. The Waterfall life cycle rigidly separates the phases of development. We interpret the 
Waterfall life cycle to suggest that developers should plan to meet specific deadlines and other goals. The Waterfall life cycle contradicts 
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concepts like "design for test," which mix up the phases. 
Sashhni Life Cycle: In Wicked Problems, Righteous Solutions, DeGrace and Stahl report on the Sashimi life cycle defined by 

Takeuchi and Nonaka. The Sashimi life cycle allows phases to overlap and the process evolves more flexibly. • Early extensions of the 
Waterfall life cycle allowed a project to go back and forth between two adjacent phases, as shown by the Enhanced Waterfall diagram in 
Figure 5. Unfortunately, this diagram with back arrows reminds me ofa Markov chain and conveys a different shift in emphasis than the 
Sashimi life cycle. 

Chaos Life Cycle: Raccoon describes the Chaos life cycle in The Chaos Model and the Chaos Life Cycle. The Chaos life cycle 
allows phases to come and go, though the whole process gradually shifts from Requirement Analysis to Maintenance. Since all 
development activities occur throughout the process, the phases show a change in emphasis, rather than substance. Because unexpected 
difficulties and opportunities can arise, software development projects may evolve unpredictably and developers must respond to these 
circumstances. 

Process Structures 

Process structure is about the number of levels that we perceive 
within a process. Figure 6 shows the evolution from a Unified process to 
the Macro- and Micro-processes to the Complexity Gap. 

Unified Process: In this wave, we perceive software development 
as one cohesive process. The same kinds of activities occur throughout the 
whole process. For example, the specification activities are essentially the 
same as the implementation activities. A unified process suggests that 
control is possible. One implication is that we can schedule the writing of 
individual lines of code. 

Macro-Process and Micro-Process: In Object-Oriented 
Analysis and Design, from 1994, Booch distinguished between different 
activities in the Macro-process and the Micro-process. The Macro-process 
concerns management issues of project scheduling, while the Micro- 
process concerns hacker-level activities of writing lines of code. In this 
wave, we recognize that using tools is hard and managing the project is 
hard, but that these two parts of the process require distinct skills. Booch 
implies that by elaborating on the parts of process that we already 
understand, parts that are addressed by contemporary management and 
developer tools and structures, we will improve software development. 
Acknowledgingthat both levels embody a separate process implies that we 
cannot schedule the writing of lines of code. 

Complexity Gap: In The Complexity Gap, Raccoon argues that 
the Macro-process and Micro-process do not touch because they concern 
radically different issues. The Complexity Gap corresponds to the middle- 
level structures that developers use to match Macro-process goals with 
Micro-process solutions. The size of the Complexity Gap corresponds to 
the nature of the problem, as well as the structures and support tools 
available to help solve the problem. Raccoon argues that matching goals 
and solutions is very difficult and, in fact, developers spend most of their 
time working within the Complexity Gap. Raccoon emphasizes the 
importance of the parts of the process that we don't understand, the parts 
that are not defined by conventional management and developer tools and 
structures. Acknowledging that there is a gap between the Macro-process 
and the Micro-process implies that schedules are related to lines of code 
indirectly through middle-level structures. 

Strategies 

All strategies raise the issue of efficient production. Strategies 
help developers to produce effective programs quickly by expressing 
priorities. A strategy is a body of knowledge that guides developers through 
a sequence of actions or state changes, consistently pointing out good 
moves and avoiding bad moves. Strategies focus attention on the tasks left 
to finish by identifying the steps that must be completed. An appropriate 
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Figure 6: Three Process Structures. 
The Top Represents the "Whole Program" Level. 

The Bottom Represents the "One Line of Code" Level. 
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Figure 7: Each Strategy Adds a New Emphasis. 
Stepwise Refmement and Module Decomposition 

strategies emphasizes Top-Down. 
Object-Oriented Design strategy emphasizes Bottom-Up. 

Chaos strategy emphasizes Middle-Out. 

strategy encourages developers to keep working until the to do list is empty and the program is complete. 
Every process follows a strategy. Beginners, randomly choosing any legal move, follow a very naive strategy, though most 

strategies are more sophisticated. The advantages of Stepwise Refinement over random programming are obvious. Figure 7 shows the 
evolution of strategies, from the Stepwise Refinement and Module Decomposition strategies to the Object-Oriented Design strategy to the 
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Chaos strategy. 
Stepwise Refinement Strategy: The Stepwise Refinement strategy emphasizes top-down influences. We also call this strategy 

the "top-down refinement" or "function decomposition" strategy. The developer begins with a conception of the entire program and then 
breaks that conception into a sequence of smaller steps, expanding each in turn until a program is produced. The Stepwise Refinement 
strategy defines simple but explicit sequences that work well for simple programs. • The Stepwise Refmernent strategy has four main 
limitations. First, it works best for programs with lots of code and little data as it ignores the concept of state. Second, it presumes the 
independence of sub-problems which may be untrue when everything appears connected to everything else. The Stepwise Refinement 
strategy blindly assumes that a problem really is decomposable. Third, it doesn't allow for corrections and revisions. Some researchers 
suggested that when this strategy is used properly, developers cannot make mistakes and will not need to make revisions. Thus, it fails to 
cope with mistakes and requirement changes and other difficulties encountered during typical projects. Minor changes to the problem 
definition can force major rewrites. Fourth, the Stepwise Refinement strategy provides no means to reconsider past decisions or make 
corrections. Thus, it can easily lead to local minima that are very frustrating to work with. The Stepwise Refinement strategy can lead to 
code bloat when developers produce many similar versions of a furtction because the strategy provides no means to revise the code. 

Module Decomposition Strategy: The Module Decomposition strategy emphasizes top-down influences. Parnas applied the 
Stepwise Refinement strategy to modules and argued that developers should break the application into separate modules, identifying one 
module after the next, and that good modules should hide information. Pamas discusses the properties of good modules, but unfortunately, 
not how to create good modules. • Parnas began describing module decomposition in 1971, and he points out that Gauthier and Pont 
addressed modules in Designing Systems Programs from 1970. 

Object-Oriented Design Strategy: The Object-Oriented Design strategy combines top-down and bottom-up goals, but it 
emphasizes bottom-up goals. Objects combine functions with state variables, so developers need a bottom-up concept to reflect the design 
of state. • The analog of"top-down algorithmic decomposition" is "object-oriented decomposition." When the Qbject-Oriented Design 
strategy simply means, "design the classes ftrst," it resembles the Stepwise Refinement and Module Decomposition strategies. Botch, in 
Object-OrientedAnalysis andDesign, and Coad and Yourdon, in Object-OrientedDesign, each define their own version of the Object- 
Oriented Design strategy. The Object-Oriented Design strategy is actually independent of programming technology, because it simply 
emphasizes both top-down and bottom-up issues, and it can be applied to Function and Module languages. • Botch first described parts of 
the Object-Oriented Design strategy in Describing Software Development in Ada from 1981. Botch defined the whole strategy in 
Oriented Development in 1986 and the strategy caught on around 1990. 

Chaos Strategy: In The Chaos Strategy, Raccoon defines the Chaos strategy as, "resolve the most important issue first," where 
issues may come from any level of the project. The Chaos strategy combines top-down, bottom-up, and middle-out goals, but it emphasizes 
middle-out goals. It points out the difficulties of creating middle-level structures to match up the top and bottom levels. The middle-out 
emphasis is important for coping with the middle-level issues, such as the components and modules identified by the Complexity Gap. 
Because the activities in the middle levels are independent of applications and technologies, they differ from activities on other levels. The 
Chaos strategy is independent of technologies and applies to both Function and Object languages. 

User Participation 

The relationship between developers and users has evolved slowly 
over the years. The User Participation stream shows a gradual shift from 
our emphasis on hardware to our emphasis on individual users, as well as 
the shift in our perception of the user from being a corporation to being an 
individual. I believe that users should be present throughout software 
development, at least conceptually. In some cases, users know what they 
want and should have authority over the project. In other cases, such as 
mission-critical and life-critical applications, developers may have special 
expertise and should have total authority over the project. Developers and 
users should share the authority over the project appropriately. The 
following questions describe some of the issues. "How do users fit into 
software development?" "To what extent do we encourage users to 
participate?" "Who is responsible for understanding the users's needs?" 
"How far into the project do we cut offuser input?" Figure 8 shows the 
evolution of the User Participation stream from None to Once to Periodic to 
Ongoing. 

No Interaction - -  1945 to 1969: In the earliest days, we didn't 
acknowledge that users existed. Developers wrote programs for companies 
or government agencies rather than "users." And, we defined software 
development almost entirely in terms of hardware. 
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Figure 8: Periods of User Participation in the Process. 
This shows the percent ofproeess concerned with users. 

One Interaction m 1970 to 1984: During this wave, we tolerated one period of interaction with users: the Requirements 
Analysis phase. During the requirements analysis phase, developers queried the sponsoring organization. Developers thought that 
applications were easy and programming was hard. So, once the user pointed us in the right direction, we would valiantly struggle with the 
hardware on behalf of users. Satisfying the needs of users meant getting a program done. We thought that the real problem was the 
computer. 
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Periodic Interaction-- 1985 to 1996?: During this wave, we accepted that many applications are hard to defme. Developers 
must repeatedly refer to the user, to ensure that they solve the right problem. In this wave we opened the door to users a little wider, but we 
still kept users at arm's length. We referred to users periodically, though within any one prototype developers allowed only one step for 
interaction. As user interfaces became more important in the 1980s, user interface developers included users throughout their process, but 
software engineers still excluded users from most of their process. 

Ongoing Interaction - -  19977 to ?: During this wave, we recognize that users participate throughout the process. All software 
is developed on behalf of users, and working with users is a basic part of all processes. We accept that users are as important as hardware. 
Satisfying the needs of users means more than simply getting a program done. Users provide an ongoing dialog by requesting 
enhancements and reporting bugs. This comes up in business and consumer application for personal computers. Developers working on 
products that compete in the PC mass market value their ongoing relationship with users. 

RELATIONSHIPS BETWEEN STREAMS 

In this section, I describe the connections between streams, particularly between technologies, strategies, and models. All streams 
progress together and each stream reacts to changes in the other streams. Advances in one stream often suggest advances in other streams. 
In fact, an advance in one stream will often be ignored until it is supported by similar advances in other streams. If only one stream in 
Software Engineering changed, we might not even notice it. 

Linking Organization Technologies with Optimization Technologies 

Organization and optimization technologies evolve very closely together. One way to thirik about the importance of optimization 
is that most developers refuse to use a new notation unless it does them a specific favor. A new organization without a new level of 
optimization adds the burden of notation for larger concepts, without reducing the developer's responsibilities. On the other hand, 
improving only the optimizer without improving the organization leaves out half of the benefit to developers. Thus, to make the most 
improvement, we must improve both organization and optimization technologies at the same time. 

In a similar vein, interpreters do not free developers from the need for speed. Interpreters that implement high-level languages do 
not shrink the range of a developer's responsibility. Interpreters are tools for abstraction and organization, but not optimization. 
Interpreters have often been used to develop, but have rarely been used to popularize, new organizations. In Compiling Matlab, Johnson 
and Moler describe the intricate relationship between interpreters and compilers in much more detail. 

Function Languages and Statement Optimizers: Function languages organize functions and they optimize statements. Moving 
from Assembly languages to Function languages with statement optimizers removed several layers of problem solving. Programmers 
gained more than just smaller, more focused programs. They avoided several levels of problem solving: interpreting the higher-level 
concepts, gener,'iting the assembler code, and optimizing the results. Developers can ignore immense amounts of assembler trivia and they 
can put that energy to use implementing other aspects of the application. • Macros with parameters evolved very closely with functions. 
Macros resemble functions, but provide little support for optimization because macros are based on simple text-based transformations that 
are unable to express or use the underlying semantic structure. Note: the difference between functions and macros is that functions can be 
optimized, which explains why modules and objects are built on top of functions rather than on top of macros. 

Module Languages and Loop Optimizers: Soon after compiler writers learned to optimize loops, language designers created 
Module languages. Loop optimizers were developed several years before Module languages, but both technologies caught on together in 
the 1970s. Loop optimizers allowed developers to use loops and conditional statements for clarity, avoid gotos, and still write efficient 
code. Loop optimizers became part of the effort to implement Fortran and Algol well, but were used most effectively in module languages. 
Module organizations could not succeed without improved loop optimizers that free developers from even more low-level details than do 
statement optimizers. • By the time global optimizing compilers became available, (which optimized whole functions), we were already 
on the threshold of the Object wave. 

Object Languages and Function Optimizers: Compilers for Object languages can parse the syntax that combines functions 
into objects and they can optimize whole functions, one at a time. The delay in creating "global optimizing" compilers that could optimize 
whole functions explains why Object-oriented programming took so long to mature. Until compilers could optimize whole functions, 
developers felt responsible for implementing all concepts below the function level and were unwilling to focus only on object-level 
concepts. When compilers could optimize functions, Cox invented Objective-C, Stroustrup invented C++, and Meyer invented Eiffel. 
Stroustrup was the first to work through the implications of efficiently placing objects on the stack and in static memory. Compilers for 
early Object-Oriented languages, including Simula and Smalltalk, lacked function optimizers and could not work with other languages and 
compilers. 

Framework Languages and Inter-Function Optimizers: I believe that when we can optimize groups of functions at one time, 
we will invent another organization technology. Various forms of inter-function optimization have been proposed, including inter-function 
data flow analysis and function specialization, but we still lack organization principles that empower these optimizers. In The Design and 
Evolution of C+ +, Stroustrup argues that templates must be as efficient as type-safe macros, so he prohibits templates from providing 
interesting inter-function optimizations, which means that templates provide less functionality than they could. One important optimization 
enabled by frameworks is the selection of ftmetions. Balance and Gianeola used frameworks to choose the most efficient implementation ol 
each function call in a program. When language designers overcome their current perspectives and meaningfully combine templates with 
inter-function optimizers, they will invent languages that outstrip C++ and Ada-H-. 
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Linking Strategy with Organization and Optimization Technologies 

I want to point out the strong connection between technologies and strategies. It seems natural that developers should use 
language resources as well as their circumstances permit. Developers not only need good technologies, they need to know when and how to 
use the technologies. Good strategies tell us both. Strategies are tied to optimization and organization in that most strategies say: "use 
current language resources well" or more specifically "trust both your organization and your optimizer." • We can think of strategies in 
both technology-dependent and technology-independent ways. One criticism of the technology-dependent versions of strategies is that they 
are much too literal. A strategy that is defined in terms of one technology will not keep up with evolving technologies and will succumb to 
the end of interest in the defining technology. So, the Object-Oriented Design strategy will succumb to the end of current object-oriented 
programming languages. Yet, the technology-independent concepts within these strategies will last for many decades to come. 

Stepwise Refinement Strategy: The Stepwise Refmement strategy guides the development of Structured code. This strategy is 
best known for emphasizing top-down goals but it actually combines both top-down and bottom-up goals. Both Mill's top-down ideas 
about functions and Dijkstra's bottom-up ideas about trusting loop optimizers combine to form the whole Stepwise Refmement strategy. 
Top-Down: Mills is renowned for urging developers to use functions well. A simplification of his proposal suggests: when writing a 
program in C, developers should begin making decisions with the ma in  ( ) function and proceed down the "call graph," defining one 
function after the next. Bottom-Up: Dijkstra is renowned for urging developers to "avoid gotos." For developers to follow his advice, they 
had to trust that their optimizer would implement loops, conditionals, and basic blocks well. Dijkstra wrote about gotos, but he effectively 
promoted trusting loop optimizers. I believe that without effective optimization technologies, Dijkstra's advice would have been ignored. 
• In Structured Programming with Ooto Statements, Knuth points out that Schorre was avoiding gotos in 1963 and Landin was avoiding 
gotos in 1966, but the issue caught fire with Dijkstra's paper in 1968. 

Module Decomposition Strategy: The Module Decomposition strategy guides the development of module-oriented code. This 
strategy is an adaptation of Mill's Function Decomposition strategy to modules that uses the principles of information hiding. 

Object-Orientod Design Strategy: The Object-Oriented Design strategy guides the development of object-oriented code. It 
emphasizes using objects for organization and exploits the new global optimizing compilers. Top-Dowm From the top, object 
decomposition is an adaptation of the Function Decomposition and Module Decomposition strategies. The Object-Oriented Design 
strategy encourages developers to break the application into a set of objects, identifying each object, one after the next, until a program is 
produced. Bott0m-Up: From the bottom, two versions of the Object-Oriented Design strategy encourage developers to use bottom-level 
technologies well. Both versions urge developers to trust that their compiler optimizes functions well. The Booch version says: "use 
Object-oriented concepts well" by writing or changing one line of code or restructuring one whole chunk of code, until the program is 
done. The Coad and Yourdon version extends this argument to "use all standard technologies well." The Coad and Yourdon version is not 
truly "Object-Oriented," as they recommend using all sorts of technologies including relational databases, but it is a contemporary strategy 
as they recommend using all technologies available in 1991 to their fullest. 

Chaos Strategy: Templates and patterns are clearly middle-level constructs and the Chaos strategy says use resources from all 
levels well. Since patterns apply to all levels, the Chaos strategy means, "use patterns well." In The Timeless Way of Building, Alexander 
describes a version of the Stepwise Refinement strategy called "One Pattern at a Time" that is much too simple and out of keeping villa the 
flexibility of patterns. He really needs the Chaos strategy. No other book on patterns discusses strategies for applying patterns. The Chaos 
strategy can handle the up-coming inter-function optimizers, frameworks, and templates, which address issues closer to the middle levels of 
contemporary applications. 

Linking Models with Strategies 

Models and strategies exist independently of each other, yet they need each other. Models define the structures within processes. 
Strategies give day-by-day and line-by-line advice about software development. Since models don't give us line-by-line advice, we need 
another concept like strategy. Since strategies don't define the larger structures within a project, we need models to support the use and 
application of each strategy. 

Waterfall Model and Stepwise Refinement Strategy: The Waterfall model describes large-scale structures in a project rather 
than day-to-day programming activities. Stepwise refinement gives advice for completing independent and decomposable problems, rather 
than large-scale program structures. The Waterfall model and Stepwise Refinement strategy seem well suited to each other because both 
define a very self-assured, straight-forward, one-shot approach to software development and neither accommodates revisions or mistakes. 

Spiral Model and Object-Oriented Design Strategy: The Spiral model describes large-scale iterations within projects and 
ignores the day-to-day programming activities. The Object-Oriented Design strategy gives advice about adding one line of code, changing 
one line of code, and reorganizing sections of code rather than large-seale structures. However, the Object-Oriented Design strategy needs 
an iterative concept of process structure like the Spiral model. In the context of the rigid Waterfall model, the flexible Object-Oriented 
Design strategy seems wishy-washy and out of place. 

Chaos Model and Chaos Strategy: One criticism of the Chaos model is that it is so flexible that anything is possible and it 
doesn't really tell anybody what to do, so developers need a strategy to guide their efforts. However, without a multi-level model such as 
the Chaos model, the flexible Chaos strategy seems wishy-washy. The Chaos model and Chaos strategy support each other. 

Boehm used the Spiral model to argue that managers should do risk analysis at the beginning of each prototype, when they define 
the goals of the prototype. Raccoon used the Chaos model to argue that developers should always resolve the most important issue first, 
which can be interpreted as extending Boehrn's advice to all levels of a chaotic process. 
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Linking User Participation with Models 

Models discuss the relationship between developers and users. These relationships can be explicit, as described in the Chaos 
model, which devotes a whole section to the issue, or implicit, as described in the Waterfall model, which defines the Requirements 
Analysis phase. I believe that the role that users play should depend on the particular application, so models should support user 
participation to the extent that it is necessary. • Before the Waterfall model, we didn't document the roles of users explicitly. 

Waterfall Model and One Interaction: The Waterfall model focuses on contract-based relationships and specifications, and 
simplifies the goal of pleasing the user to meeting the specification. The Waterfall model defines exactly one period of interaction with 
users: the Requirements Analysis phase. We use the Waterfall model to emphasize one-shot projects. This perspective is more prevalent in 
projects sponsored by the DOD and DOE because it fits with the top-down, authoritarian style of these organizations. 

Spiral Model and Periodic Interaction: The Spiral model focuses on contract-based relationships and specifications. It still 
simplifies the goal of pleasing .the user to meeting the specification, but it enables more user input throughout the process. We use the 
Spiral model to emphasize long-term, sequential relationships with users. The Spiral model encourages developers to repeatedly refer to 
the user, though each prototype permits one specific step for this interaction. 

Chaos Model and Ongoing Interaction: The Chaos model states that users participate throughout the process. The Chaos 
model documents the ongoing interaction between users and developers as an important part of software development. Racxx~n uses the 
Chaos model to show that users, developers, and technologies work together throughout the process to create useful technical solutions. 
Users strongly influence the top half of the Chaos model. Raccoon did not invent ongoing interaction, rather the Chaos model documents 
the relationship with users that many companies have fostered for years. 

In A Rational Design Process: How and Why to Fake It from 1986, Parnas and Clements argue that even though processes are 
iterative or perhaps even random, they should be treated as if they resembled the Waterfall model. They call this a "rational" approach to 
process. • Now that we recognize our Ongoing interaction with users, we structure it into a Periodic interaction~tn the consumer software 
industry, developers cannot produce a special version of software after each enhancement request and bug report. So, we group the users' 
requests into minor and major revisions, and typically produce a minor release every three months and a major release every year or two. 
For very "rational" reasons, we structure our Ongoing interaction into a Periodic interaction. 

Linking Other Streams With Models 

Many people think that models are theoretical curiosities. Yet many aspects of our contemporary reality can be interpreted in 
terms of contemporary models. Table 2 links models with three other streams. I believe that each of these streams evolved of its own 
volition. Models reflect, but do not impose, these perspectives. 

Table 2: Lh~dng Models with Three Other Streams 

Models Reuse Estimation Maintenance 

Waterfall Each project was independent. We We estimated projects Maintenance is a total loss. So emphasize 
didn't think about reuse, except in the independently, one at a time, proper specification, design, and 
context of portability, using ad hoe methods, implementation to avoid maintenance. 

Spiral 

Chaos 

Reuse became popular with the Spiral 
model. Of the 178 references in 
Confessions of a Used Program 
Salesman by Tracz, only 38 came 
before 1985, and only 13 before 1980. 
During the late 1980s and early 1990s, 
reuse was a very "Spiral" concept. We 
reused a unit of code on one level. We 
treated it like a product and reused the 
whole chunk or didn't reuse anything. 

In the late 1990s, we will reuse code on 
many levels. Different people will 
reuse parts from all scales of a project, 
including all sizes of code, designs, and 
specifications. 

Boehm estimates the effect of 
each project based on past 
projects. The Spiral model led 
to the Capability Maturity 
Model using a sequence of 
projects as the basis for the 
next bid. 

Learning curves emphasize 
the economics of ongoing 
processes. (Mandelbrot shows 
that log-log space is chaotic.) 

Maintenance feeds into the next project. As 
long as code is reused, maintenance can be 
paid for by the next project, so maintenance 
is good. We emphasized maintaining code, 
but not any other artifacts. 

The Chaos life cycle shows that 
maintenance equals development 
throughout the process. We maintain code 
in all phases (including specifications, 
design, testing) on all levels. 

SIX TIDES 

When many aspects of our software development reality change, the combined waves form a tide. We cannot ignore these broad- 
based transitions, even if many of the changes are only loosely related. This section builds on the linking between streams in the previous 
section. 
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I believe that from 1945 to 1999, Software Engineering will have evolved through five major tides, each lasting about eleven 
years. I believe that we are on the verge of the next tide that will take Software Engineering into the next millennium. 

Naive - -  1945 to 1955 

The zeitgeist of the Naive tide is "computers are neat." We just began to understand computer hardware and software. Since many 
people believed that software controlled hardware, they believed that software and hardware shared common problems and solutions. 
Large programs were hundreds of lines long. 

Software Engineering began with a decade of naive programming: the Naive tide. This tide could also be called the "Natural," 
"All-At-Once," or "Mystical" tide. The name "naive" does not necessarily mean that developers did a bad job. At the beginning of this tide, 
we didn't know what we were doing, and uninformed developers often did bad work. We had no tools, no methodologies, no experience, 
and no body of knowledge about how to create quality software productively. I suspect that many developers were very good and intuitively 
did many things well. But in general, developers were unaware of the common concerns and solutions in Software Engineering, and they 
were unable to consistently do a good job. 

As the Naive tide evolved, we developed the inkling that software differs from hardware. Researchers invented linkers and 
assemblers and other tools that exaggerated the differences between software and hardware. Software development resembled proving a 
theorem or writing a novel, because a motivated developer worked hard and almost magically produced a program. The process was 
undefined and we made few distinctions about what went on within the process. Anything goes. Whatever works. Programs happen. 

Functions m 1956 to 1966 

The zeitgeist of the Function tide is, "functions are neat." We understood that software development differs from hardware 
development. Programming was accepted as an activity in its own right, as it had its own concepts and goals and'its own tools, problems, 
and methodologies. Fortran embodied the first concept of a high-level language for users. The Function tide combines compilers for 
function and macro languages, editors, and other tools, and the new objective of making computers useful. Functions flourished with the 
commercialization of mainframes and the subsequent push to improve developer productivity. 

Functions are Neat: The second tide concerned the use of functions. Language designers used functions in many ways, inventing 
macros, Fortran, Lisp, Algol, and PL/1. In one way or another, functions have influenced computer science ever since. Functions raised the 
following questions. The question, "Is there a better syntax?" led to the Algol, Pascal, and C families of languages. The question, "Is there a 
better software architecture for Algol?" led to the refinement of stack allocation and recursion. The question, "Is there better hardware 
functionality?" led to stack architectures. 

Structured Programming m 1967 to 1977 

The zeitgeist of the Structured Programming tide combines "use fimctions and loop optimizers well" with "comparing 
techniques." Structured programming was the first movement to be big and popular, in part because it had a very clear identity. The 
Structured Programming tide combines the following waves: the Stepwise Refinement strategy, the Waterfall model, using functions and 
loop optimizers well, the rise of algorithms, and the debates over Goto statements. Structured programming evolved with the 
commercialization of mini-computers and the subsequent demand for cheaper software. Also, in the 1960s, applications grew much larger 
than ever before. 

Use Functions and Loop Optimizers Well: The Structured Programming tide emphasized using the optimizing compilers for 
Fortran, Algol, and PL/1 well. By the late 1960s, compilers for function languages could optimize loops, and developers began wondering 
how to make the best use of these technologies. The question of how to use functions well, led to the Stepwise Refinement strategy and the 
Goto wars. Ever since, we have accepted that we should minimize gotos, though to what degree is a matter-of-individual taste and 
"religion." 

Comparing Techniques: Intuitively, some software development concepts work better than others. In the middle 1960s, people 
began seriously studying the differences between software development technologies. Though, comparisons were applied to many areas of 
software development, three streams had a special influence. In programming languages with the infamous Goto debates, in the 
development of algorithms with analysis showing that some algorithms were better than others, and in the strategy stream with the 
comparison of Stepwise Refinement with Naive strategies, developers made large progress. • The first comparisons were often either 
trivial or ridiculous. The Stepwise Refinement strategy is obviously better than the Naive strategy, and Algol is obviously a better tool than 
assembly language for writing general purpose code. On the other hand, the comparisons between Algol and Fortran, which consumed so 
much effort, now seem spurious. Both languages enabled developers to write much cleaner and smaller programs than assemblers, and the 
differences between them have faded in the light of newer languages and technologies. 

Algorithms: Algorithms arose at the beginning of the Structured Programming tide. The study of algorithms evolved closely with 
the study of functions. We learned that each function should implement one algorithm well. Analysis of algorithms is also a metaphor for 
making comparisons in other streams. 

It seems natural that the first "Software Engineering" conference in 1968 would coincide with the rise of the Structured 
Programming tide. I believe that all of the waves in this tide strove to reach beyond the naive and ad hoe practices of the first two decades_ 
of software development. The waves in the Structured Programming tide share the same motivation: the quest to fred the right way to 
develop and manage software. 
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Modules - -  1978 to 1988 

The zeitgeist of the Module tide combines "groups are neat" with "correctness." Much of the Module tide reacted to 
improvements made during the Structured Programming tide. In some ways this tide represents the consolidation of Structured 
Programming goals. In other ways this tide is a stepping stone toward objects. Modules represent the shift from individual things to groups 
of things. The Module tide combines modules, general-purpose tools, the beginnings of programming environments, the Module 
Decomposition strategy, correctness, Abstract Data Types, and the debates over Ada. The Module tide was a step on the way from 
functions to objects, because data was still not the equal of functions. This wave began with the start of the PC era and the increasing need 
for productivity. In the late 1970s and 1980s, software engineering began to address huge problems, such as the Strategic Defense 
Initiative. 

Groups are Neat: Groups sprouted in every possible way. Abstract data types are groups of algorithms, modules are groups of 
functions, and programs are groups of modules. Developers need more than one compiler and one editor, they need a whole suite of tools. 
Pamas even argued that applications are groups of programs. 

Correctness: In the 1970s, we moved from the notion of correct functions to correct programs, partly as a matter of scaling up, 
and partly as a reaction to Structured Programming and Sotiware Engineering. As the meaning of algorithms sank in fully, many people 
concluded that programs were just large algorithms, and if algorithms could be correct, why not programs? Researchers interpreted 
algorithms as a metaphor and suggested that if developers "do it right," they can and will produce perfect software. 

Objects m 1989 to 19997 

The zeitgeist of the Object tide combines "iteration" with "objects are neat." The Object tide combines object-oriented 
programming languages, global optimizing compilers, the Spiral model, the Sashimi life cycle, the Object-Oriented Design strategy, 
domain specific tools, and usability. This tide also took off with graphical user interfaces. It has taken decades for developers to appreciate 
the need for objects, in part because functions and modules effectively organize programs up to 50,000 or 100,000 lines of code long and 
in part because it needed collaborating changes in other streams. 

Iteration: In the middle 1980s, iteration became one of the main themes in Software Engineering. The Spiral model and the 
Object-Oriented Design strategy both embody iteration or a sequence of prototypes. Applications for businesses and consumers, such as 
word processors and spreadsheets, were rewritten every couple of years. Reusing software over and over became an important goal. 

Objects are Neat: The Object tide moved into full swing with the popularization of C++, Objective-C, Eiffel, and the OOPSLA 
conferences. People began using objects everywhere. They created object-oriented versions of every language, system, and concept around. 
They defined the Object-Oriented Design strategy and object versions of tools, notations, and methodologies. They even rewrote many 
algorithm texts in terms of objects. 

Graphical User Interfaces: Many people link graphical user interfaces with objects, because we use objects to implement many 
graphical user interfaces. In fact, objects do not really do graphical user interfaces very well, but they do organize larger programs well, 
which is particularly a problem for programs with graphical user interfaces. Tools such as dialog editors do graphical user interfaces well. 

Patterned P r o g r a m m i n g - -  2000? to 20107 

Extrapolating out from the previous tides reveals glimpses of the next tide to rise within Software Engineering. It is hard to make 
concrete predictions about how the Patterned Programming tide will evolve and we will probably only understand it in retrospect. But I can 
make some estimations. I believe that the zeitgeist of the Patterned Programming tide will combine "using objects well" with 
"understanding the middle levels." The Patterned Programming tide will combine the technologies: Frameworks and templates, inter- 
function optimizers, and patterns; and the concepts: the Chaos model, the Chaos strategy, the Complexity Gap, and the Ongoing nature of 
software development. All of these waves show that we are striving to go beyond the object-oriented concepts from the late 1980s and 
early 1990s. I also believe that the "Patterned Programming" tide will rise in the late 1990s and fall around 2010 when new ideas, 
technologies, and perspectives will address the holes found during this tide. 

Using Objects Well: Over the last ten years, we have been adopting object-oriented technologies. We now realize that objects 
are not enough, objects have limitations. We must do more than simply use object-oriented languages and tools, we must use objects well. 
For example, Liskov and Wing point out some of the limitations of"structural" uses of inheritance and advocate "semantic" or 
"behavioral" inheritance. Templates have been added to C++ and Sather to plug holes in the type systems. 

Middle Levels: The Chaos model, Chaos strategy, Complexity Gap, Patterns, and templates all focus on the middle levels of a 
project. The Chaos model and the Complexity Gap define a multi-level structure and explicitly identify the middle levels as interesting. I 
believe that patterns work on all levels, specifically the middle levels, and that frameworks and templates will address issues near the 
middle levels of large software development projects. 

I call this tide the "Patterned Programming" tide, because patterns seem to be the most widely used (and misused) concept in the 
middle 1990s. I suspect that eventually somebody will argue that programs are just large patterns. • A whole tide requires collaborating 
changes in many streams. By themselves, patterns cannot define a whole tide. Patterns are not a programming language nor an optimizer, 
and they don't define program struclatres. Ironically, Alexander's simple variation on the Stepwise Refinement strategy for applying 
patterns is very simple for such a sophisticated concept. He really needs the Chaos strategy. • I also want to suggest a parallel to the 
"Structured Programming" tide. I believe that during the Patterned Programming tide, we will strive to use objects well, like we strove to 
use functions well during the Structured Programming tide. We are now adding type parameters to objects, like they added type parameters 
to functions during the Structured Programming tide. 
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SoRware engineering may seem to evolve very-rapidly, with one wave after the next crashing against the shore of contemporary 
practice in a seemingly endless storm of change. Yet, when viewed in terms of streams and tides, we can See that the core ideas evolve at a 
remarkably steady rate. 

The history described in this paper shows that developers, managers, and researchers have made steady progress toward the goal 
of creating reliable software productively during the last fifty years. I believe that Software Engineering can only progress so fast. To 
improve, we must find the middle of the current perspective and get good at using the current technology, before we can understand its 
limitations and how it will affect other streams. To progress to the next tide, all of the streams must progress together. I believe that 
Software Engineering will steadily progress and grow for decades to come. For comparison, we can look to the much older fields of physics 
and the fine arts that are still progressing after millennia of improvement. 

Some streams of software development may stop evolving. For example, I do not know of any interesting complexities beyond 
Chaotic, so models may stop evolving in a complexity sense. If models continue to evolve, they will change in a different sense than 
complexity. Other streams will continue evolving. I expect that organization and optimization technologies will continue improving for 
many decades to come and therefore strategies will have to keep up. 

Even though the term "Software Engineering" was first officially used in 1968, we have been addressing the issues of productivity 
and quality ever since the first digital computer was built in1945. Of the streams discussed in this paper, half go back to the first decade, 
and the rest go back to the second or third decades of software development. In two very real senses, all streams go back to 1945. First, I 
could postulate that each stream began with a wave in 1945. I could postulate a Naive model and a Naive strategy that precede the 
Waterfall model and the Stepwise Refinement strategy. I could postulate that the first programming environment consisted of pen and 
paper and that the first optimization technology was the Null optimiTer. Thus, all streams extend back to the earliest soRware development 
projects. Second, all of the improvements made during the last fiRaj years are grounded in our collective experience that began in 1945. 
According to the history presented in this paper, we just passed the 50 ~ Anniversary of Software Engineering. 
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