
BEE

UML PROVIDES A POWERFUL
FRAMEWORK AND NOTATION FOR
MODELLING BUSINESS PROCESSES

ARTICLE FOCUSES ON USING UML
TO UNDERSTAND BUSINESS

REQUIRED, RATHER THAN ’HOW’ IT
WILL BE ACHIEVED.

AND OBJECTS. THIS TWO-PART

REQUIREMENTS - ’WHAT’ IS

by Richard Vidgen

he unified modelling language (UML) has
gained widespread acceptance as a notation
for the analysis and design of software
systems. UML will also support a broader
notion of conceptual modelling; for T example, in his book Holt (IEE, 2001) shows

how UML can be used to analyse and model quality
standards, such as ISO9001, and to support the
definition of new business processes.

In response to the question ‘why do we model?’,
Booch et al. (Addison Wesley, 1999) propose a
fundamental reason: so that we can better understand
the system we are developing. In his book Brian Wilson
(Wiley, 1990) expands on the need to gain under-
standing by outlining four roles of conceptual
modelling: to clarify our thinking about an area of
concern; as an illustration of a concept; as an aid to
defining structure and logic; and as a prerequisite to
design. Although we might want to build models to
better understand current business processes, we can
also build models to represent different conceptu-
alisations of the future, as might be the case when
undertaking a radical change programme involving
business process redesign. From a system development
perspective, Booch argues that models not only help us

12 COMPUTING & CONTROL ENGINEERING I APRIL 2003

Software engineering

visualise a system as it is or as we want it to
be-they also allow us to specify the structure or
behaviour of a system, provide a template to guide us
when constructing a software system, and document
the decisions we have made.

Before launching into a review of UML as a way of
modelling business requirements, a note of caution
should be raised. The question of why we model has
been raised, but the status of the models themselves
has not been considered. Booch argues that ‘A model is
a simplification of reality’ and that ‘the best models are
connected to reality’. These definitions beg the
question of what constitutes ‘reality’ and what form a
‘connection’ might take. More broadly, Brian Wilson
defines a model as ‘the explicit interpretation of one’s
understanding of a situation, or merely one’s ideas
about a situation ... It may be prescriptive or
illustrative, but above all it must be useful’ (current
author’s emphasis). A model may indeed be a
‘simplification of reality’, but what to model and how
to represent the situation are not neutral decisions.
Models do not merely reflect reality (the ‘as is’) -they
are also implicated in the construction of new realities
(‘to be’). However, we need also to be aware of the
limitations of models and modelling notations. In
modelling current situations and potential future
realities we need to expose our assumptions, draw
boundaries, and accept that there are personal,
political and cultural aspects of the work situation that
won’t be expressed by the box and line diagrams of the
systems analyst.

In this two-part article we will illustrate the use of
UML techniques in the production of a requirements
specification for an Internet ticket booking system at
the fictional Barchester Playhouse. Although the aim
is to produce a logical model of the Playhouse’s
requirements, the second part will also provide some
pointers toward software system design.

THE UNIFIED MODELLING LANGUAGE
As object-oriented (00) programming rose in
popularity during the 1980s the ideas were taken from
software development upstream into systems design
and systems analysis. In the early 1990s a number of
00 analysis and design methods were proposed. All
had strengths and weaknesses: the Booch method
(Benjamin Cummings, 1994) was strong on design and
real-time applications, the object modelling technique
(OMT) of Rumbaugh et al. (Prentice-Hall, 1991) on
analysis and data-intensive applications, the use-case
approach of Jacobson (Addison-Wesley, 1994) on
business process modelling.

In 1994 Booch, Rumbaugh and Jacobson got together
and pooled their ideas to create the unified modelling
language, taking the best ideas from each and bringing
some standardisation to the wide range of methods
and notations for 00 analysis and design emerging in

the market. UML is now fast becoming an industry
standard, has OMG (Object Management Group)
acceptance, and a rich set of resources and software
development tools available. Although many of the
principles that underpin an 00 approach will be
illustrated as we work through the case study (for
example, encapsulation and communication by
messages), a thorough exposition is outside the scope
of this article (see Vidgen et al . , Butterworth-
Heinemann, 2003, for further details).

The core UML modelling techniques is illustrated
using the development of a theatre ticket booking
system at the fictional Barchester Playhouse. The
Playhouse wants to start up an Internet ticketing
facility in conjunction with a software house, Nimbus
Information Systems. The plan is to make the theatre
booking system an Internet application available to the
two other theatres in Barchester, both of which rely
currently on in-person and telephone ticket bookings.
Once the system is operational it would be a relatively
small step to make the service available to theatres in
any part of the country

USE CASE NOTATION
The starting point for modelling business require-
ments with the UML is the use case. Use case diagrams
are a formalised notation for modelling the system
from the perspective of the user. The focus is on what
the system does - its behaviour - rather than how it
achieves it. A use case typically represents some
functionality of the proposed system as perceived by a
user. Use cases will add business value, such as
‘process ticket returns’, and have a business outcome,
such as ‘returned tickets reallocated‘. In the early
stages of a development project it is important that use
cases focus on business goals rather than system goals.

The use case notation comprises actors, use cases
and associations (Fig. 1). An actor reflects a role that is
played by a human (or non-human) with respect to a
system. A role can be played by many people, e.g.
doctor, and one person can play many roles, e.g., the
theatre manager could play the role of box office clerk
during busy periods and a box office clerk might also
attend a performance as a member of the public. It +

Actor

Doctor
Association

COMPUTING & CONTROL ENGINEERING 1 APRIL 2003 13

Theatre Club
customer

Telephone
sales

is therefore important to think in terms of actors and
roles rather than individuals and job titles. Actors
execute use cases, such as a doctor prescribing
treatment. The link between actors and use cases is
shown by an association (Fig. l), which indicates that
there is communication between the actor and the use
case, such as the sending and receiving of messages.

Fig. 2 shows a use case diagram for the box office of
a theatre, such as the Barchester Playhouse. Human
actors (we are not talking here about the actors in a
play!) include customers and telephone sales operators.
The accounting system is a non-human actor. It is
external to the box office domain but it has
requirements of the box office and is therefore shown
as an actor.

Customers are associated with two use cases: ‘make
Internet ticket purchase’ and ‘join the Internet Theatre
Club’. These will be activities that the customers can
perform for themselves online via the Internet. It
might be argued that the inclusion of a technology, the
Internet, is misplaced in a conceptual model of the box
office. However, although we might remove the word
‘Internet’ or replace it with ‘online’, from a business
perspective it may be appropriate to make it absolutely
clear that these will be Internet services available to
customers. When developing a use case diagram it is
important that the use cases are described from the
reference point of the actor - for example, operators
sell tickets, but customers purchase tickets on the
Internet (from the Playhouse’s perspective they are
both ticket sale mechanisms).

,---

Accounting
system

EXTENSION, INCLUSION AND CENERALISTAION
General& it is best to first capture the use cases in
simple terms, identifying the core set of use cases and
actors. The use case diagram can then be refined to show
three types of association between use cases: extension,
inclusion and generalisation. Note that the arrows in
Fig. 2 do not represent flows or process dependencies -
these are more properly modelled using process flow
diagrams such as the UML activity diagram.

0 Extends: The extends relationship is usecl where
there are similar use cases but one use case does more
than. the other. For example, a ticket sale where the
performance is full (Fig. 2) requires that a variation on
the ticket sale use case be carried out. For an extends
rela1:ionship:
1 First, capture the simple, normal case, e.g., operator

ticket sale.
2 Then, for each step in the use case ask what could go

wrong, e.g.,
Check seat availability (performance full)
Take payment (credit card not authorised)

These variations can then be modelled as extensions of
the base use case. An extends relationship models the
part of a use case that the user may see as optional
behaviour, such as the situation in Fig. 2 where the
requested performance is full.

0 Include: If multiple use cases require the same
chunk of functionality then it can be made into a

14 COMPUTING & CONTROL ENGINEERING I APRIL 2003

Software engineering

separate use case and referred to with an ‘includes’
relationship. For example, ticket sales and ticket
returns both need to use the take payment use case, as
does join Internet theatre club. This functionality can
be separated out into a single use case rather than
being duplicated in multiple use cases.

With ‘extends’ the actor will deal with the base case
and the variations - the same operator will deal with
ticket sales that can be fulfilled and ticket sales that
cannot because no seats are available. With an
‘includes’ relationship a different actor might be
responsible for making a refund for returned tickets
(e.g. box office supervisor) from the actor involved in
an operator ticket sale (e.g. box office operator).

0 Generalisation: The Internet ticket purchase, where
the customer interacts directly with the ticket booking
system rather than using a telephone operator or box
office clerk as an intermediary, can be modelled as a
specialisation of the more general case of ticket sale.
This would allow the Internet ticket purchase to
inherit some of the general characteristics of the
operator ticket sale and to add refinements as needed.
For example, the operator would be able to see the
theatre layout with available seats in one colour and
booked seats in another colour. The Internet customer
might not be allowed to see exactly which seats are
booked (an empty theatre might put them off booking)
and be allocated seats automatically by the system.

CLASS DIAGRAMS
Booch defines a class as ‘a description of a set of
objects that share the same attributes, operations,
relationships and semantics’. A class diagram is a
model of the things that are of interest in the problem
domain being studied. In different domains there will
be different things of interest; in modelling a
university the developer might find classes such as
‘Student’, ‘Lecturecourse’, and ‘LectureRoom’. In the
context of a theatre, classes for consideration could be
‘Actor’, ‘Star’, ‘Theatre’, ‘Seat’, ‘Production’, and so on.
These are the conceptual categories that help us make

sense when structuring our perceptions about the
theatre situation. In UML classes are shown as
rectangles (Fig. 3).

The class name should be a noun or noun phrase
and begin with a capital letter. The class model
represents things that last over time - the
functionality of the system may change often, but a
good class model will either cope with new
functionality as is or be capable of being extended
without a major redesign. It is unlikely that a ‘correct’
class diagram will be produced at the first attempt;
the class diagram will evolve as the developer better
understands the domain and the requirements.
Classes can represent tangible things, such as the
seats in a theatre, and intangible things, such as an
account balance in an accounting system. Classes can
also be used to model roles, such as the box office
manager in a theatre.

CLASSES AND ASSOCIATIONS
Classes represent things; relationships represent the
connections between things. UML caters for three
types of relationship: association, generalisation and
aggregation. An association is a structural rela-
tionship between things showing that one can navigate
from the instances of one class to the instances of
another (and possibly vice versa).

Associations are shown as solid lines that connect the
same or different classes. In Fig. 3 the association could
reflect the real-world business rule that ‘a production
must be staged by a single theatre’. The association can
be read in two directions -the inverse in Fig. 3 would
be that ‘each theatre may stage many productions’. Each
of the directions represents a role of the association;
connections between two classes, known as binary
associations, have two roles. Just as classes have
instances, so do associations. An instance of the
theatre/production association could be ‘the theatre
Barchester Playhouse stages a production of Hamlet’.

0 Multiplicity: In the case of Fig. 3 the ‘1’ indicates that
a production must have one-and only one- 4

multiplicity-

many (mandatory)
multiplicity- one

Theatre

\I t - r - - -- 1 ,’ 7
association

Production Class _ _ _ _ _
name

I ,’
1 title ‘”\\\\ stages ‘* 1 1 name

1 videoClip 1 staged by 1 webSiteURC
attributes - - - - - 1 productionvpe 1 * location

association association
name name direction

COMPUTING &CONTROL ENGINEERING I APRIL 2003 15

I titlP I * 4 stages I

&du&onType I name I i videoclip 1
L - L - - . - - J

assessviability
cancelProduction
IistPerformances

1 perfonnancefime

schedule
cancelPerformance
findseats
reserveseats

11

location I
webSiReURL I
listparts

I 1..*

dexriition
inaxseatingcapacity

’P
I 1..*

transactionlD
transactionTime
creditCardType
creditCardNumber
creditCardExpiryDate
tiansactiowlmount
transactionCurrency

authorisepayment

0.. 1

*
(seat in same
theatre as priceAchieved
performance ~ bookingstatus
staged)

book
reserve
release

clubName
discountPercent
membershipFee j

theatre. This does not stop another theatre staging a
production of, for example, Hamlet, but this would be a
different production and that would be involved in a
separate instance of the ‘stages’ association. If it was
optional for an production to be assigned to a theatre
(e.g. in the early life of a production, before a theatre
has been identified), then the association would be
labelled ‘O..l’, indicating that the minimum number of
theatres a production can be allocated to is zero and the
maximum number one.

ATTRIBUTES AND OPERATIONS
Attributes: Booch defines an attribute as ‘a named

property of a class that describes a range of values that
instances of the property may hold’. More intuitively,
an attribute describes the instances of a class, e.g.
every production would be expected to have a title and
every theatre a name. Attributes are shown below the
class name and each compound word should begin
with a capital with the exception of the first word, e.g.
productionType (Fig. 3). Some attributes will be

mandatory, such as title, while others are optional, e.g.
videoclip. Optionality is not usually shown on the class
diagram, although it can be, e.g. videoClip(0).

Operations: ‘An operation is the implementation of a
service that can be requested from any object of the
class to affect behaviour’ (Booch et aZ.). Operations are
listed in the bottom compartment of the class box
(Fig. 3). To invoke behaviour in an object, another
object sends that object a message. For example,
instances of the class Production support the
operation ‘assessviability’. A production object
receiving this message will assess its viability and, let
us assume, return a binary value: ‘viable’ or ‘non-
viable’. How the Production class implements this
method is not the concern of the object sending the
message. The production class might carry out the
equivalent of flipping a coin, or it might make a
forecast of bookings and compare this with production
costs such as stage set design. The complexity of the
implementation is hidden; the sender of the message

COMPUTING &CONTROL ENGINEERING I APRIL 2003

Software engineering

invoking the operation need only know how the public customer, but some of the customers will be members
interface is defined for the class Production. of the theatre club and qualify for a discount on the

ticket price. Because it is possible to get to the class
THEATRE BOOKING SYSTEM CLASS MODEL theatre via two routes -performance and part of
The conceptual class diagram for the theatre booking theatre - a constraint is needed to ensure that the
system is shown in Fig. 4. Although the model is basic theatre is the same via both routes for a given ‘seat at
it does support the core requirements of a simple performance’. This situation arises because in the
ticketing system. At the heart of the model is the class early life of a production no seats have been sold and
SeatAtPerformance. Instances of this class tie together therefore an association with Theatre is needed via
a performance and a part of a theatre, e.g. Hamlet at Performance and Production.
8.00pm on 5 March 2003 in seat B15 of the circle of the Note that the class model includes a Theatre class.
Barchester Playhouse. To allow seats to be reserved This could be instantiated with a single theatre, e.g. the
prior to payment, the association between Barchester Playhouse, but it could also be instantiated
SeatAtPerformance and Transaction is marked as with multiple theatres and therefore forms the basis
optional. The theatre booking system demonstrates all for the theatre booking system - a generic multi-
three types of relationships: associations, general- theatre booking system suitable for a theatre industry
isation, and aggregation. portal site. However, the model in Fig. 4 provides a
0 Generalisation: Generalisation is a relationship basic facility for making Internet ticket sales, but does
between a general thing and a more specific thing. The little more. A more sophisticated system might allow
more general thing is of a supertype customers to go onto a wait list for
class and the more specific thing is of a performances or productions that are

full. Furthermore, recursive classes
are usually an essential feature of any

subtype class. In the theatre booking
class model the class Member is shown
as a subtype of class Customer. Some reasonably complex model, e.g. to
customers will be members and get model organisation structures, but are

outside scope of this article (see the
book by Vidgen et al., 2003 for further

benefits such as discounted ticket
prices, but all members are customers.

system owner is that customers who
register as members can subsequently BUS1 NESS REQUl REMENTS
be uniquely identified by their user id The UML notation can be used to
and targeted for promotions and relationship building. model business and organisational requirements from
Instances of the class Member will inherit the a conceptual perspective with aims that include
characteristics (attributes, behaviours, and asso- gaining understanding of the current situation,
ciations) of the class Customer while adding their own envisioning new business processes, and the
specialisations (attributes such as userid and an development of a structural and behavioural model
association with the class Theatreclub). that will support the development of a software
0 Aggregation: The association and the generalisation system. In this article, use cases were used to model
are two types of UML relationship -the third type of functions from a user perspective and class diagrams
association is the aggregation. The aggregation to lay out the structure of the ‘things’ in the situation.
represents a ‘whole/part’ relationship. In practice it is In part 2 (next issue) the behavioural aspects will be
often difficult to distinguish between associations and modelled using interaction diagrams and state
aggregations; in many cases the aggregation is just a transition diagrams.
strong form of association between two classes and is
shown by an open diamond (e.g. the association ACKNOWLEDGMENTS
between Partoffheatre and Seat in Fig. 4). A This article is reproduced with the permission of the
composition, shown by a filled diamond, is a stronger publisher and is an abridged extract from: Vidgen, R.
form of aggregation. With a composition the parts live T., Avison, D. E., Wood, J. R. G. and Wood-Harper, A. T.:
and die with the whole and cannot be transferred. For ‘Developing Web Information Systems’ (Butterworth-
example, it does not make sense to move part of one Heinemann, 2003) Further details of WISDM are
theatre to another theatre. If a theatre is deleted then available at www.wisdm.net together with a demon-
the parts of that theatre must go as well. But, one could stration theatre ticket booking system developed using
move seats from one part of a theatre to another part of ColdFusion MX. W
that theatre, or indeed to another theatre altogether.
0 Constraints: A transaction is simply a device for Richard Vidgen is with the School of Management,
grOUping together seats at a performance for the University of Bath, Bath BA2 7AY. UK, e-mail:
purposes of payment. A transaction must have a mnsrtv@management.bath.ac.uk

THE BENEFIT
To THE OWNER

IS THAT CUSTOMERS
CAN BE

TARGETED
The benefit to the theatre booking IDENTIFIED AND details).

COMPUTING &CONTROL ENGINEERING I APRIL 2003 17

http://www.wisdm.net
mailto:mnsrtv@management.bath.ac.uk

