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Abstract

This paper reports an experimental study investigating

the effectiveness of two code-based test adequacy criteria

for identifying sets of test cases that detect faults. The all-

edges and all-D Us (modified all-uses) coverage criteria

were applied to 130 faulty program versions derived from

seven moderate size base programs by seeding realistic

faults. We generated several thousand test sets for each

faulty program and examined the relationship between

fault detection and coverage. Within the limited domain

of our experiments, test sets achieving coverage levels

over 90?Zo usually showed sigrdjlcantly better fault

detection than randomly chosen test sets of the same size.

In addition, sigrd$cant improvements in the effectiveness

of coverage-based tests usually occurred as coverage

increased from 90% to 100Yo. Howeve~ the results also

indicate that 100?Zo code coverage alone is not a reliable

indicator of the effectiveness of a test set. We also found

that tests based respectively on controljlow and dataflow

criteria are frequently complementary in their

effectiveness.

1 Introduction

Control flow-based code coverage criteria have been
available to monitor the thoroughness of software tests at
least since the 1960’s [11, 12, 24]. More recently,
dataflow-based methods have been defined and
implemented in several tools [7, 10, 15, 20]. Various
comparisons have been made of the theoretical relations
between coverage methods [4]. However, the questions of
real concern to researchers and potential users of these
adequacy criteria deal with their actual effectiveness in
detecting the presence of faults in programs. Test
managers and developers would like to know whether the
investment in systems to monitor code coverage is
worthwhile, and whether the effort to look for additional
tests that increase coverage is well-spent. They would
like to know the additional cost of achieving adequate
coverage, the payback for that cost, and in particular,
whether fault detection increases significantly if test sets
are adequate or close to adequate according to the criteria.

In an effort to answer these questions, we have
performed experiments comparing dataflow coverage and
controlflow coverage using the dataflow coverage system
Tactic developed at Siemens Corporate Research [20]. To
make our results as relevant as possible to professional
software developers and testers, we searched available
public archives for specifications and C programs that
would be suitable for the study. We ended up with seven
moderate-size C programs, into which we seeded 130
different faults.

Section 2 of the paper describes the test adequacy
criteria that are monitored by Tactic. Section 3 briefly
describes some previous work relating to evaluation of
adequacy criteria. Section 4 lpresents the goals of our
study, discusses assumptions and the design of the
experiments, and describes the programs used in the
study. Section 5 explains some of the data analysis. In
Section 6 we describe our observations. Section 7
contains conclusions.

2 The Test Adequacy Criteria

2.1 Dataflow Coverage

Dataflow-based adequacy criteria stipulate that a test
set must exercise certain clef-use associations that exist in
the code. A def of a memory location is an operation that
writes a value to the location. A use of a location is an
operation that reads the location’s current value. A def-

use association (DU) for a given location is a pair
consisting of a def and a use of the location, such that
there is a controlflow path in the code from the def to the
use on which there is no intermediate redefinition or
undefinition of the location. A test case exercises a
particular clef-use association if the test case causes
execution to arrive at the site of the def operation and
execute the clef, and subsequently arrive at the site of the
use operation and execute the use, without having
executed any other def or undefinition of the memory
location. A test set exercises a DU if at least one test case
in the set exercises the DU.

Note that a DU is defined in terms of static properties
of the code, i.e., in terms of the existence of a path in the
code’s controlflow graph, while exercising a DU is
defined in terms of dynamic execution. To satisfy the all-
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DUS criterion, a test set must exercise every executable
DU in the program.

Test adequacy criteria based on dataflow were
proposed by Rapps and Weyuker [22, 23], Ntafos [18],
and Laski and Korel [16] as alternatives to the
control flow-based measures of test adequacy.

The first dataflow adequacy tool was implemented by
Frankl, Weiss, and Weyuker [7,8], who built the ASSET
system that operated on Pascal code in accordance with
the definitions of Rapps and Weyuker. The inputs to
ASSET are a Pascal program and a set of test data; its
output is a determination of whether or not the test data
are adequate with respect to one of the Rapps-Weyuker
dataflow criteria.

The Tactic system for C programs evaluates test sets
for all-DUs adequacy, as well as for all-edges adequacy.
Since our ultimate goal is to produce a test adequacy tool
that is usable in production environments, Tactic handles
almost all of standard C, including structures, arrays,
pointer references, and interprocedural dataflow. A key
feature of Tactic is its ability to perform accurate analysis
of code for clef-use associations where one or both of the
def and use are indirect references [20, 21]. Although this
capability greatly enhances the system’s ability to track
dataflow accurately, it also greatly increases the number
of clef-use associations detected for a program, as well as
creating the problem of determining whether or not there
exists a runtime clef-use association that corresponds to a
statically found clef-use association involving a pointer
reference or a structure element.

Our dataflow criterion all-DUs differs from the anu-

ses criterion originally defined by Rapps and Weyuker
and used as the basis of ASSET. Because of the following
three major differences, test sets satisfying all-DUs are in
general not comparable to sets satisfying all-uses. First,
we do not distinguish between c-uses and p-uses; a use is
any occurrence in the program where a value is accessed
from memory. In the Rapps-Weyuker theory, p-uses were
defined so that satisfaction of all-uses would imply
satisfaction of branch coverage, since a p-use of every
variable that appears in the predicate of a decision
statement is placed on every branch that leads away from
the predicate. In our system, all-DUs does not subsume
branch coverage, since our definition does not provide a
way to force execution of any particular branch leaving a
predicate node. We do not combine DU and branch
coverage in a single criterion since each measure has its
separate benefits. In addition, for these experiments, we
were interested in studying the effects of ~he individual
test requirements induced by each type of coverage.

Second, our definition of use is not restricted to named
variables, since in C it is possible to reference a memory
location through a pointer without having a variable
associated with the location. Thus, a def occurs when
dynamically allocated memory is assigned a value with a
statement such as *p = 15; a corresponding use occurs in
a statement such as x = *q + 5, if there have been no
intervening definitions of the location, and q points to the
location assigned to through p. We aiso capture

interprocedural clef-use associations, where the def occurs
in a calling procedure, and the use in the called procedure
is through a dereferenced pointer or a global variable
reference.

Third, our method of checking test execution for
satisfaction of the dataflow criteria differs from that used
in ASSET, where a DU is considered exercised if a def-
clear path from a def node to a use node is executed. In
the presence of pointer dereferences, it is not sufficient to
monitor the execution of paths from def sites to use sites,
since this does not guarantee that the def and use are of
the same memory location, or even that a def or use have
been executed. Hence Tactic considers a DU to be
exercised only when an actual write of a memory location
(the clef) is followed by an actual fetch from that location
(the use).

2.2 Controlflow Coverage

Edge coverage by Tactic extends traditional branch
coverage by considering not only edges based on explicit
controlflow statements in the code, but also edges based
on implicit controlflow in Boolean expressions. For
example, Tactic considers the C statement

if (a && b && c) x=5;

else x=1O;

to have 6 edges, not 2; four sets of values for a, b, and c
are required to exercise all the edges. Beizer [3] refers to
this level of coverage as predicate coverage.

3 Other Experimental Work
Frankl and Weiss conducted a study [6] which

compared the all-edges criterion to the all-uses criterion
for nine Pascal programs. For some of the subject
programs, they concluded that test sets satisfying the anu-
ses criterion were more effective at detecting faults than
sets satisfying all-edges. We discuss the FrankI-Weiss
study in greater detail in Section 4.2.3.

A study by Basili and Selby [2] attempted to compare
three techniques: code reading by stepwise abstraction,
functional testing using equivalence partitioning and
boundary value analysis, and structural testing using
statement coverage. Seventy-four programmers applied
the three techniques to four unit-sized programs
containing a total of 36 faults in a fractional factorial
experiment, giving observations from 222 testing sessions
on the effectiveness of the testing methods. They also did
a cost analysis and a characterization of the faults
detected.

A study by Thevenod-Fosse, Waeselynck, and Crouzet
[25] used mutation scores to compare the effectiveness of
deterministic structural testing techniques to their own
method of test generation (structural statistical testing).
The mutations were automatically created from four small
C programs, creating a total of2914 mutants; equivalent
mutants were eliminated by hand. The test sets for the
deterministic part of the testing were created by hand for
each criterion under consideration; for each criterion and
for each program, at most 10 test sets were designed, with
at most 19 members in each test set. The resulting
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mutation scores of these test sets were used to determine
the relative effectiveness of the methods. The study
concluded that structural statistical testing was more
effective.

Foreman and Zweben’s [5] study examined the
effectiveness of several variants of controlflow and
dataflow criteria in detecting thirty of the real faults that
were documented by Knuth [14] during development of
the TeX program. A testing criterion was considered
effective at detecting a fault only when all test sets
satisfying the criterion revealed the fault. Application of
the all-uses criterion guaranteed detection of thirteen of
the thirty faults. Eleven of these thirteen were also
guaranteed to be detected by tests satisfying branch
coverage.

4 Goals and Design of the Experimental Study

4.1 Goals

Broadly stated, our goal for these experiments was to
obtain meaningful information about the effectiveness of
controlflow and dataflow coverage methods for fault
detection. We hoped to document the different
capabilities of the two coverage methods. We also tried to
answer questions concerning the use of code-based
coverage criteria, e.g., whether it is necessary to achieve
1009. coverage to benefit from using a criterion.

An important goal was to carry out the experiment on
realistic programs, using test generation techniques that
are similar to actual practice.

4.2 Experimental Design

While designing an experiment for comparing the fault
detection ability of two testing strategies, the choice of
subject faulty programs is clearly very important. Ideally,
they should represent both the program space and the
fault space. Our sampling of the program space was
severely restricted, partly due to the availability of
resources for carrying out the experiments and partly due
to the limitations of our prototype. Our sampling of the
fault space was also restricted. Ideally, the most desirable
types of faults to study would be real faults that have been
recorded in the course of development of production
software. However, since there is only scant information
available to us about production faults, we decided to
manually create and seed faults into the subject programs.
For the experiment, we created 130 faulty program
versions from seven moderate size base programs by

seeding realistic faults. Characteristics of the base
programs and the seeded faults are described in Section
4.3.

The results of this study should be interpreted keeping
in mind this limited representation of the program space
and the fault space.

Adequacy criteria such as all-DUs or all-edges define a
stopping rule, but do not specify how the test cases are to
be generated, analyzed, and validated. There are several
possible models for a testing strategy using a coverage-
based test adequacy criterion. In this section, we first
describe one such model and discuss the compromises
made in order to implement this model in our
experiments. Then we describe the experimental
procedure based on the compromised model.

4.2.1 Model of Coverage-based Testing

As shown in Figure 1, our experimental design is
based on the following model of a coverage-based testing
strategy. First, the tester generates an initial set of test
cases and runs the coverage analysis on it. If the coverage
is inadequate, the tester generates additional test cases
until adequate coverage is attained. The resulting
intermediate test set may be too big or may contain test
cases that are redundant with respect to the goal of
achieving adequate coverage. Hence the tester may
employ a strategy to prune the intermediate test set and
obtain a test set with a smaller number of test cases
having the same coverage. The purpose of this pruning
may be to reduce the effort for validating the test cases
and/or the effort for maintenance of the test set.

Ideally, satisfaction of an adequacy criterion by a test
set would assure a specific level of fault detection
regardless of the methods used in generating the test cases
and in pruning the test sets. However, our experience in
this study indicates that for (he all-DUs and all-edges
criteria, this is not true: two test sets satisfying the same
coverage criterion may differ widely in their fault
detection ability. The quality of the final test set produced
may be affected by the methods used for initial test
generation, additional test generation, and test set
pruning. Usually the initial lest generation method is
independent of the coverage criterion, while the
additional test generation and test set pruning methods
use the coverage information produced by the test cases
previously generated. Below, we discuss the practical
problems encountered in specifying these methods and

I I Coverage Info

Initial Intermediate

Test Cases Test Set
‘@*

Figure 1: ModeI of Coverage-based Testing
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describe the compromises made to work around the
problems.

Test Generation

Testers use their own expertise and domain knowledge
in designing initial and additional test cases. We found
that adequate test sets produced by different testers varied
in their effectiveness at detecting faults. Interestingly,
adequate test sets produced by the same tester also vaned
in their effectiveness. Therefore, in order to compare two
testing strategies for a given program, it was necessary to
carry out a statistical comparison of the fault detection
abilities of a large number of independent test sets that
were produced by using each of the testing strategies.
Towards this goal, we introduce the notion of a test pool

and describe the test set generation method used for
choosing test sets from the test pool. Ideally, the test pool
for a specific (program, specification, tester) combination
should be the set of all test cases that are accessible to the
tester while testing the program against the specification.
By accessible test cases, we mean those from which the
tester is likely to choose, given his/her expertise and
knowledge of the program domain. In reality, the test
cases accessible while following one testing strategy may
be very different from those accessible while following
another strategy. For simplicity, we assume that the

accessible test cases do not vary significantly between the

testing strategies based on the all-DUs and all-edges

criteria. Also, the likelihood of choosing a test case may
differ across the test pool, hence we would also need a
probability distribution function to accompany the test
pool. For lack of a better option, we use a uniform

distribution. To minimize the bias introduced by a
specific tester, we used two to three testers for generating
the test pool. Given the test pool, the test set generation
method was straightforward: test cases are randomly
selected from the test pool until a desired size test set is
obtained. We hope that the test sets thus produced would
represent the variety of test cases that the testers are likely
to produce. The actual procedure used to generate the test
pools for the subject programs is described later.

Test Pruning

As mentioned earlier, the purpose of test set pruning
could be to reduce the effort for validating the test cases
and/or the effort for maintenance of the test set. Since our
goal was to examine the effectiveness of test adequacy
criteria, test cases that did not improve coverage were of
little value. If an intermediate test set consisted of n test
cases, t,through tn,generated in that order, the test set
pruning method eliminated a test case tiif it did not
improve the cumulative coverage obtained by test cases t,
through ti.l.

Summary

In our experiment, we consider a f@ed set of faulty
programs and a fixed group of testers. In order to simulate
the behavior of the testers for selecting test cases several
times using each of two coverage criteria, we introduce
the notion of a test pool that approximates the set of test
cases accessible to the testers while testing a specific

(program, specification) pair. Random selection from this
test pool is used as the test generation method. The test
pruning method is dependent on the coverage criteria:
following the order of test generation, test cases that do
not improve coverage are eliminated.

Below. we elaborate the actual twocedure used for
generating the test pool and test sets: and for collecting
the experimental data.

4.2.2 Actual Experimental Procedure

Test Pool Generation

We produced the test pool for each program in two
stages that correspond to the way a tester might use an
adequacy criterion in practice. The first stage consisted of
creating a set of test cases according to good testing
practices, based on the tester’s understanding of the
program’s functionality and knowledge of special values
and boundary points that are easily observable in the
code. To create this initial test pool (ITP), the tester
applied the category-partition method to write test
specification scripts for the Siemens TSL 1 tool [1, 19] to
produce test cases. The, tester examined the coverage
achieved by the TSL-produced tests, and modified the test
specification to improve coverage. At some point, the
tester decided that it was time to move on to the second
stage where helshe individually examined the unexercised
coverage units in the code and attempted to write test
cases to exercise them. In fact, the goal was to insure that
each exercisable coverage unit was covered by at least 30
diflerent test cases, where two test cases are considered
different if the simple control paths that they exercise
differ2. Since the test pools as described so far were
constructed from the base versions of the programs, we
also examined each faulty version, and added necessary
test cases to the pool to insure that each exercisable
coverage unit in the faulty versions was covered by at
least 30 cases. The cases in this additional test pool (ATP)

were mostly hand generated, although sometimes new
TSL scripts were written to specify the test cases. The
final set of test cases produced by augmenting the initial
pool is called the test pool (TP). Table 2 gives the sizes of
the test pools for each base program and indicates the
relative size of the corresponding initial and additional
test pools. For every test case in a test pool, we ran each
of the faulty versions of the program and recorded in a
table the outcome (correct = no fault detection, incorrect
= fault detection) and the list of edges and DUS exercised
by the test case.

1TSL is a compiler whose input includes a specification of the
functional characteristics of the software to be tested, together
with a description of the runtime testing environment. The
tool’s output is an executable test script of the test cases.

ZThe rea50n for requiring 30 different test casesfor each cOver-

age unit is to ensure that the results are not biased by the ability
of a small number of test casesto detect fauks. The sample size
of 30 ensures that any observed correlation between a coverage
unit and fault detection has reasonable statistical significance.
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Generating Test Sets

To measure the fault detecting ability of test sets at
different levels of Edge and DU coverage, we generated
for each criterion approximately 5000 test sets for each
faulty program from the program’s test pool. We realized
that it is generally not possible to generate test sets that
exactly achieve a specified coverage level. Therefore, we
used the following strategy to indirectly obtain test sets
with a variety of coverage levels.

To generate a test set of desired size N for a given
program, we applied the test generation and test pruning

3 The test cases were randomlymethods in parallel.
selected out of the test pool. If a selected test case
increased the coverage achieved by the previously
selected tests on the program, it was added to the test set.
The set was considered complete as soon as either its size
reached N or its coverage reached 100% (since no test
case can increase coverage after that). In some cases,
therefore, the resulting test set size was smaller than the
desired test set size. In order to generate test sets with a
wide variety of coverage levels, the desired sizes were
chosen randomly from the integers 1,2,.. .,R, where R was
determined for each program %y trial and error as a
number slightly larger than the size of the largest test set
reaching 100% coverage.

4.2.3 Comparison with the Experimental Design of

Frankl and Weiss

The design of our experiment is somewhat similar to
that of the Frankl and Weiss experiment [6] comparing
dataflow- and control flow-based adequacy criteria.
Below, we briefly describe their experiment and compare
it with ours.

Frankl and Weiss used the ASSET system to study
nine Pascal programs, each with a single existing error.
For each program, they first generated a large set of test
cases called the universe. Each test case was executed, its
output was checked for correctness, and the program path
it exercised was recorded by ASSET. In the evaluation
phase of the study, the recorded information was used to
determine each test set’s edge coverage and clef-use
coverage.

Test sets of a chosen size S were built by randomly
selecting S test cases from the universe. Each test set’s
all-uses coverage percentage was calculated, and it was
recorded whether or not one or more test cases in the set
detected the fault. The size S was chosen such that
significant numbers of both all-uses adequate and all-
edges adequate test sets would be chosen. On average, the
all-uses adequate test sets were larger in size than the all-
edges adequate test sets. The largest of the programs
considered had 74 executable edges and 106 executable
uses.

3 The resulting test sets are the same regardless of whether the

test generation and test pruning methods are applied in se-
quence or in parallel.

Thus, the Frankl and Weiss study differed from our
study in the following aspects:
●

●

●

✎

small Pascal programs vs. moderate-size C programs

ASSET system vs. Tactic system

existing faults vs. seeded faults

very few faults vs. relatively large number of faults,

no test set pruning vs. removal of test cases tlhat do not

improve coverage,

all-uses vs. all-DUs, and

different methods used for generating the test pool (uni-
verse).

4.3 Subject Faulty Programs

Base Programs

The base programs were chosen to meet special
criteria. To allow creation of a reasonable test pool, they
must have an understandable specification. Because each
program must be understood by several people (to seed
faults, to create tests, and to examine the code for
infeasible clef-use associations and edges), they must not
be overly complex. But they also have to be large and
complex enough to be considered realistic, and to permit
the seeding of many hard-to-find errors. Each program
must be compilable and executable as a stand-alone unit.
The programs used for the experiment are C programs
obtained from various sources, ranging in length from
141 to 512 lines of code. Table 1 shows the number of
lines of code (excluding blanks and comments) in each of
the base programs, the number of executable edges and
DUS, and a brief description of each program.

Table 1: Base Programs

Executable
Program LOC Description

Edges Dus

replace

teas % :: 6=~~~tion

US1.123 472 97

E

1268 lexical analyzer

USI.128 399 159 240 lexical analyzer

schedule 1 292 62 ’294 priority scheduler

schedule2 301 80 217 priority scheduler

tot_info 440 83 292 information measure

Seeding Faults

We created faulty versions of each base program by
seeding individual faults info the code. The faults are
mostly changes to single lines of code, but a few involve
multiple changes. Many of the faults take the form of
simple mutations or missing code. Creating N faulty
versions from the same base program has significant
benefits: the understanding gained from studying the code
applies to all N versions, and the work involved in
generating the test pools applies to all the versions.
Perhaps most significant, the existence of the (presumed
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Table 2: Faulty Versions and Test Pools

“S’‘“’~”f-’’~l:~Program
‘erslOns Tests (ITP) Tests (ATP) (ITP + ATP)

replace I 32 I 79% I 21% I 5548 I .0005-.056

teas I 39 I 65% I 35% I 1562 I .0006-.084

US1.123 7 99% 1% 4092 .0007-.056

US].128 10 99% 1% 4076 .0079-.086

schedulel I 9 I 90% \ 10% I 2637 I .0027-.100

schedule2 I 10 I 77% I 23% \ 2666 \ .0008-.024

tot_info 23 64% 36% 1067 .0019-.159

correct) base version supplies us with an oracle to check
the results of test cases executed on the faulty versions.

To produce meaningful results, we had to place certain
requirements on the seeded faults. The faults had to be
neither too easy nor too hard to detect. If they were too
hard, then all fault detection ratios would have been
essentially zero, and no visible differences among the
techniques would have been observable. If they were too
easy, then almost any test set would have detected them,
and there would have been no measurable effect of the
coverage to observe. We set a lower bound of 3 detecting
test cases, and an upper bound of 350 for each faulty
program. The program US1.128, for instance, with a test
pool size of 4076 cases, had 10 faulty versions; the
hardest fault was detected by 32 test cases (detection ratio
.0079), and the easiest by 350 (detection ratio .086). More
than 55 of the originally seeded faults were not included
in the study because of very low detection and more than
113 were not included because of very high detection.
The 130 faults included in the study were created by 10
different people, mostly without knowledge of each
other’s work; their goal was to be as realistic as possible,
by introducing faults that reflected their experience with
real programs. For each base program, Table 2 gives the
number of faulty versions, the composition and sizes of
the test pool, and the range of failure ratios of the test pool
over the faulty versions of the program.

5 Data Analysis
The basic data collected for the experiments was the

fault detecting ability of the test sets generated for each
faulty program. Since we wanted to see how fault
detection varied as coverage levels increased towards
100%, the test generation procedure was designed to
produce a wide range both of test set sizes and coverage
percentages, specifically to produce at least 30 test sets
for each 2% coverage interval for each program.

The resulting data allowed us to examine the
relationships among the coverage level, size, and fault
detection attributes of the test sets produced by applying
each of the testing strategies to each faulty program.

Figure 2 shows an example of the graphs we used to study
these relationships for each individual faulty program.
The coverage graph shows the relationship between fault
detection and the coverage levels of test sets, and the size
graph shows the relationship between fault detection and
the sizes of test sets.

The horizontal axis of the coverage graph is divided
into 290 wide intervals (e.g., 9 l-93~0) ending at 99’%0,and
the rightmost interval which is 1% wide (99-100%). Each
plotted point represents the fault detection ratio of all the
test sets whose coverage is within an interval. The fault
detection ratio for a given interval is tin, where n is the
total number of test sets whose coverage percent is in the
interval, and m is the number of these sets that contain a
fault-detecting test case. The fault detection ratio for each
interval is plotted against the midpoint of the interval. The
graph shows two plots, one for DU coverage and one for
Edge coverage. In the example, .75 of the test sets with a
97-99% DU coverage level and .43 of the test sets with a
97-99% Edge coverage level detected the fault.

The horizontal axis of the size graph is divided into
size intervals of width 2. For each interval and for each
coverage type, the fault detection ratio is defined as tin,

where n is the total number of test sets of that coverage
type in the size interval, and m is the number of these sets
that contain at least one test case that detects the fault in
the program. The fault detection ratios for each interval
are plotted against the midpoint of the interval. We also
analytically computed the fault detection ratio for test sets
of sizes that are randomly chosen from the program’s test
pOOl. This function is referred to as Frandc)m,and is shown

on the size graph together with the two plots for the
coverage-based strategies. This makes it possible to
investigate the role of test set size in determining fault
detection. In the example of Figure 2, test sets for the
interval 22-23 had the following fault detection ratios:

random sets (of size 23): .42

Edge-based sets: .48

DU-based sets: ,70
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Figure 2: Fault Detection Ratios for One Faulty Program

In the example of Figure 2, DU-based test sets at
coverage levels from 90- 100% clearly outperform Edge-
based test sets, and in addition DU-based test sets of size
10 or greater outperform random test sets. In general,
however, the performance of both types of coverage
varied widely. Therefore, we attempted to classify each
faulty program according to the method that seemed most
effective in detecting its fault. To do this, we first defined
six relations DU> Edge, Edge> DU, DU> Random,

Edge >Random, Random >DU and Random> Edge as
described below.

For each faulty program, we fitted second order, least
squares curves to the coverage and size plots for each
strategy. The curves fitted to the coverage plots are FCDU
and FCedpe, and the curves fitted to the size plots are
FSDU arido~Se@e.

For each fault, we say that DU>Edge if FCnll(lOO%)

is greater than FCedge( 1MY%), and the differenc~~s larger
than the standard deviation of the difference between the
measured fault detection ratios and their least squares
approximations [9]. A similar definition applies for
Edge>DU, with “Edge” and “DU’ interchanged.

For a given test set sizes, the notation Frand,)m(s) is the
probability that a randomly chosen set ofs test cases from
the test pool contains at least one fault-detecting test case,
i.e., Frmdom (s) is the expected fault detection ratio of
random test sets of size s. To avoid bias in favor of the
coverage strategies, Frand{)mis always calculated from the
test pool with the higher failure ratio, either TP or ITP. Let
d be the size of the largest test set generated for DU
coverage, and let M~Du be the maximum value of
FSDU(S) for the sizes (1 ,...,d). Similarly, let e be the size
of the largest test set generated for Edge coverage, and let
Maxed ~ be the maximum vahle of FSedge(s) for the sizes
(1 ,...,f’f. We say that DU>Random if Max~u> F,and,)m(d),

and Edge >Random if Maxed8e >Frdn&~(e), and these

differences satisfy a standard cieviation property similar to
that for DU>Edge and Edge> DU. Similarly, we say that
DU < Random if MaxDU<FrurLdc)m(d) and Edge <Random

( ).‘f ‘aed e< ‘random e
iFor 2 faults, all detection ratios were so low that it did

not make sense to compute the above relations, hence we
refer to them as low detection faults. Specifically, a fault
is a low detection fault if its detection ratios were lower

Table 3: Classification of Faults

Number
Fault Detection Ratio

Class Characteristics at 10070 coverage
of faults

rein, avg, max

DU DU > Edge and DU > Random 31 .19, .67, 1.0

Edge Edge > DU and Edge> Random 25 .17, .57,.99

DU-&-Edge DU > Random and Edge> Random 32
.14, .59, 1.0

and not (DU > Edge or Edge> DU)

Coverage Total I DU > Random or Edge> Random \ 88 I

Non-Coverage DU c Random and Edge< Random 9

Other cannot classify 9
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than .125 at the highest achieved coverage with both
coverage methods, as well as with random test sets as
large as the largest coverage-based sets. The other 106
faults are called high detection faults. Table 3 gives a
classification of all the high detection faults based on the
truth values of the above relations. The table also gives
the variation in fault detection at 100% coverage level in
cases for which either of the coverage criterion is better
than random. Nine faults could not be placed into any of
the first five categories because they did not satisfy any of
the needed combinations of relations. For example, DU
and Edge might have had approximately equal fault
detection ratios at 100%, while neither was significantly
better than Random. These nine faults are put in the
“Other” category.

6 Observations

Fault Classification
Since the faults in our study are not necessarily

representative of the kinds of faults found in practice, we
resist the temptation to make any general inferences based
on the relative frequencies of the different fault classes.
Clearly the majority of faults in our study lend themselves
better to detection by test cases based on one or the other
coverage-based method, although both coverage methods
performed noticeably worse than random test selection
for some faults. We were not able to discern any
characteristics of the faults, either syntactic or semantic,
that seem to correlate with higher detection by either
method.

Limitation of Coverage as an Adequacy Criterion
The fault detection ratio at 100% coverage varied

significantly across different faults in the same fault class.
For example, the fault detection ratio of test sets with
100% DU coverage varied from .19 to 1.0 with an
average of .67 for the 31 faults in the DU class. These and
similar numbers for Edge coverage show that high
coverage levels alone do not guarantee fault detection. We
conclude that by itself, 100?ZOcoverage, either edge or
clef-use based, is not an indication that testing has been
adequate. Rather, code coverage seems to be a good
indicator of test inadequacy. If apparently thorough tests
yield only a low coverage level, there is good reason to
continue testing and try to raise the coverage level. The
value of doing this can be seen by examining the

detection ratios of test sets as their coverage levels
approach 100%.

Detection Behavior in the 90-100~0 Coverage Range

For most faults, the detection ratio of test sets increases
markedly as their coverage increases. This is especially
noticeable as the coverage increases from 90% to 100%.
Figure 2 shows an example of the increase in
effectiveness when the last 10% of coverage is achieved.
At 9070 DU coverage, the detection ratio is 0.4, while at
100% coverage, the ratio has increased to 0.95. For Edge
coverage, the increase is less dramatic, but the ratio still
rises from 0.33 to 0.48. Tables 4 and 5 show the average
fault detection ratios over the high detection faults for the
five intervals in the91 - 100% range.

Table 4: DU Coverage vs. Random Selection

% DU Coverage / 91-93% [ 93-95% / 95-97% I 97-99% I 99-loo%

average size of DU coverage test sets I 7.9 I 9.1 I 11.3 I 14.2 I 17.4

average fault detection ratio of DU coverage test sets I .20 I .25 \ .33 I .42 I .51

average ?ZOsuperiority in fault detection of DU cov-

erage test sets over same size random test sets

average YOincrease in the size of random test sets

required to yield the same fault detection as the DU

coverage test sets

1%

*

14%

21%

*

46% 79%

68%

160%

* The observed difference is not statistically significant (less than 95% confidence).

Table 5: Edge Coverage vs. Random Selection

VO Edge Coverage 91-93% 93-95% 95-97% 97-99% 99-loo%

average size of Edge coverage test sets 7.6 8.5 9.7 11.2 12.6

average fault detection ratio of Edge coverage test sets .28 .31 .35 .41 .46

average 70 superiority in fault detection of Edge cover-
40% 48%

age test sets over same size random test sets
50% 68% 75%

1 1 i 1 I

average ?to increase in the size of random test sets

required to yield the same fault detection as the Edge 51% 64% 77% 11270 163%
coverage test sets
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Table 6: DU Coverage vs. Edge Coverage

% Coverage I 95-97% I 97-99% I 99-loo%

average YOdifference in size of DU coverage test
170 9% 21%

sets over Edge coverage test sets

average ?6 difference in fault detection of DU * *
38%

coverage test sets over Edge coverage test sets

*The observed difference is not statistically significant (less than 95?10confidence).

The Size Factor

Higher coverage test sets typically are larger than
lower coverage sets. To investigate the influence of test
set size on fault detection, we asked the following
questions:
● For a specific coverage interval, what is the percentage

superiority in fault detection of coverage-based test sets
over that of same size random test sets?

● For a specific coverage interval, what percentage in-

crease in the size of a random test set is needed to pro-

duce the same fault detection as the coverage-based test

sets?

Table 4 addresses the above questions for test sets based
on DU coverage in the 91- 10@Zo range. The figures
clearly indicate the benefit of selecting test sets from the
test pool using DU coverage rather than random selection.
Table 5 presents similar results for test sets based on Edge
coverage in the 91-100% range. The averages in the
tables are computed over the 106 high detection faults.

DU vs. Edge Coverage

Achieving a given DU coverage level generally
requires larger test sets than the same Edge coverage
level. To examine whether the DU coverage test sets had
any significant benefit over Edge coverage sets, we
computed the average percentage difference in size and
fault detection between the DU coverage test sets and the
Edge coverage test sets for the high detection faults.
Table 6 shows these numbers for the three coverage
intervals in the 95-100% range. In this range, the sizes of
DU coverage sets were greater than the Edge coverage
sets with >9990 confidence. Correspondingly, the DU
coverage sets had better fault detection, although with
lower confidence. We would have liked to analyze the

data further to investigate whether or not the better fault
detection of the DU coverage sets was primarily due to
larger test sets. However, the results of such an analysis
would not be meaningful since the differences in fault
detection are not statistically significant. From these
results we conclude that there is no clear winner between
the two coverage criteria.

Fault Detection of the Test Pool Parts

Our two-phase test pool generation procedure allows
us to compare the fault detection ability of the initial test

pools against that of the coverage-enhanced test pools.
Recall that the additional test cases were added to the

initial test pools to increase coverage and ensure that each
executable coverage unit is exercised by al least 30
different test cases. For more than half the faulty
programs, these additional test cases were much more
successful at detecting faults than the test cases of the
initial test pool. Expressing the percentage of detecting
tests in the ATP as a multiple of the percentage of
detecting tests in the ITP, we found the factor to vary from
O to 480. For 73 of the 130 faults, the ATP was more than
twice as successful in fault detection as the ITP. Table 7
shows the number of faults with this factor in several
ranges.

Table 7: Relative Fault Detection by
Initial and Additional tests

det (ATP) / Get (ITP)

--l=

Number of faults

0- 1.0

1.01 -2.0 I 17

2.01 -10.0 I 36

10.1-480 I 37

det (ITP) = O
~$

The numbers demonstrate the vahte of using the
coverage criteria to motivate the creation of additional
test cases.

7 Conclusions
We have carried ottt an experimental study

investigating the effectiveness of dataflow- and
controlflow-based test adequacy criteria. The all-edges
and ,all-DUs coverage criteria were applied to 130 faulty
program versions derived from seven moderate size base
programs by seeding realistic faults. For each faulty
program, several thousand test sets were generated and
the relationship between fault detection and coverage was
examined.

Our results show that both controlflow and dataflow
testing are useful supplements to traditional specification-
based and informal code-based methods. The frequently
higher detection rates achieved by the coverage-based
tests that were added to the initial test pool show that the
criteria can be very useful at instigating the generation of
high-yield test cases that may be omitted otherwise.
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On the other hand, achieving 100% coverage is not
necessarily a good indication that the testing is adequate,
as shown by the large number of low detection faults, as
well as by the wide variation in the fault detection ratios
at 10090 coverage.

The analysis of detection ratios as coverage increases
shows that 100% coverage, although not a guarantee of
fault detection, is much more valuable than 90 or 95Y0.

Finally, we saw an approximately equal split between
faults that were detected at higher ratios by Edge
coverage and by DU coverage, leading us to conclude that
the two methods, according to the way they are measured
by Tactic, are frequently complementary in their
effectiveness.
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