Point — Counterpoint

Challenging Universal Truths
of Requirements Engineering

&) Because vequirements engineering is likely to be a major issue in this decade, now is a
good time to examine two widely beld beliefs: Requirements describe a system’s “wbat,” not
its “how.” Requirvements must be vepresented as abstractions.

Jawep SippiQ1, Sheffield-Hallam University

o trace the emer-
gence of significant ideas in soft-
ware development, simply track
what part of the idealized life cycle
has gotten all the attention over the
years: In the 60s, it was coding; in
the *70s, design; in the *80s, specifi-
cation.

Of course, all these issues have
always been important and major
contributions are not restricted to
these decades, but it was during
these times that each activity
emerged as a subject in its own
right, with its own community of
activists.

I think most would agree that
requiremnents engineering will be a
critical issue in the *90s. And it has
certainly attracted its share of mis-
sionaries! In this essay, I explore
two of the so-called universal truths
of requirements engineering, to
stimulate discussion and challenge
current thinking.

FIRST UNIVERSAL TRUTH

Requirements describe the “what” |

of a system, not the “how.”
Itis generally accepted thata re-

quirements document contains a |

description of what the system will
do without describing how it will
do it.! Alan Davis calls this the
“what-versus-how paradox:” Most
popular approaches to require-
ments engineering solve the prob-
lem of requirements engineering in
a unique way.

‘We can make sense of this para-
dox by observing that each solution
is one level in a hierarchy of ab-
straction levels, distinguished by
the extent that it abstracts require-
ments. As Davis said, “one person’s
‘how’ is another person’ ‘what.””
An intermediate level is both the
“how” of the level above it and the
“what” of the level below it.'

This appears to solve the prob-
lem, but it leaves unresolved the
queston of whether or notitis pos-
sible or desirable to separate the

tured-programming proponents

like Edgser Dijkstra argued with |

firm conviction that developing,
understanding, and reasoning
about programs on the basis of as-
sertions (the “what”) was superior
to using procedural thinking (the
“how”). This despite empirical evi-
dence that not only did people un-
derstand programs from an opera-
tional — or at least from a mixed —
perspective, but also that program-
ming was a process involving ex-
perimentation and it could not be
reduced to a rigid ideology based
on abstractions.

This debate spilled over into the
1980s, when the issue was whether
or not specifications should be exe-
cutable. In this case, Ian Hayes and

| Cliff Jones strongly recommended

“what” from the “how” in practice. |

The essence of this evokes the

ming in the 1970s. Then, struc-

18

0740-7459,/94 /$04.00 © IEEE

keeping the “what” and “how” sep-
arate.

The declarative approach to re-
quirements is overwhelmingly
more popular than what Harold

| Abelson and Gerald Sussman have
debate over structured program- |

called the imperative approach, |

which they distinguish from the |

MARCH 18894

“classical mathematical” viewpoint em-
bodied in declarations.’

Others have questioned the entire
premise of the what-how debate. William
Swartout and Robert Balzer have written

that separating the specification from the

implementation is “overly naive and does
notmatch reality.... Specifications and im-
plementations are, in fact, indmately in-
tertwined because they are respectively,
the already-fixed and yet-to-be done por-
tions of multistep development.”

In a similar vein, Joseph Goguen has
argued “the belief that the steps of a life

cycle should be executed sequentially isa |

crude form of the myth that there is more
or less a unique best system to be built.”

sense that they do not already exist, but
rather emerge from interactions between
the analyst and the client organization.”

SECOND UNIVERSAL TRUTH

Requirements should be represented as ab-
stractions.

Requirements modeling involves
using abstractions to produce a view of the
system that is independent of the method
and notation used. Indeed, implicit in
Davis’ exposition of the what-how para-
dox is the notion that all models vary only
in their level of decomposidon. This im-
plies that there is some objectve reality

. place today’s most popu-
According to Goguen, it is better to think .
of requirements as “...emergent, in the :

that can be abstracted. It also implies that |

requirements methods are free of as-
sumptions.

Matthew Bickerton and I have contra-
dicted these implied characteristics.* We
believe that assumptions about things like

organizations and society invariably be- !

come embedded in the
requirements method as
it is developed. There-
fore, not only are such
methods not assump-
ton-free, their applica-
tion cannot result in the
same solution.
However, when we

lar methods into a taxon-
omy, they all tend to fall
into the same class: ra-
tional functionalism.®
Ironically, they at least
appear to be based on similar assumptions.

But what of the notion of an objective
reality that can be captured in some ab-

straction? This begs the question: Whose
reality? Some argue that reality is socially

constructed as a result of interactions
among participants in the requirements
process.” Therefore, the constructed reality

- varies from participant to participant —

no single group or even participant knows
or owns the abstracted model.

So if we reject the traditional concept
of an abstract model — a tool that is inte-

ACKNOWLEDGMENTS

pletely my responsibility.

REFERENCES
NJ., 1993.

Nov. 1989, pp. 330-338.
New York, 1985.

tions,” Comm. ACM, July 1982, pp. 438-440.

UK., 1992.

Many of these ideas have originated from my close collaboration and friendship with Alan Davis and
Joseph Goguen — I am indebted to both. Any misrepresentation of their ideas is, of course, com-

L. A.M. Davis, Software Requirements: Objects, Functions and States, Prentice-Hall, Englewood Cliffs,
2.1J. Hayes and C.B. Jones, “Specifications are Not (Necessarily) Executable,” Software Eng. 7.,

3. H. Abelson and G. Sussman, The Structure and Interpretation of Computer Programs, McGraw-Hill,
4. W, Swartout and R. Balzer, “On the Inevitable Intertwining of Specifications and Implementa-

5.J. Goguen, “Requirements Engineering: Reconciliation of Technical and Social Issues,” tech. re-
port, Centre for Requirements and Foundations, Oxford University Computing Lab, Cambridge,

6. M. Bickerton and J. Siddigi, “The Classification of Requirements Engineering Methods,” Proc.
Int’l Symp. Requirvements Eng., IEEE CS Press, Los Alamitos, Calif., 1993, pp. 182-186.

7. C. Floyd et al., Software Development and Reality Construction, Springer Verlag, Berlin, 1991.

8.J.A. Goguen and C. Linde, “Techniques for Requirements Elimination,” Proc. Int’l Symp. Re-
quirements Eng., IEEE CS Press, Los Alamitos, Calif., 1993, pp. 152-164.

IEEE SOFTWARE

WE SHOULD
FOCUS ON
INTERACTIONS
AMONG USERS
AND NOT ON
INDIVIDUAL
USERS.

gral to most scientific disciplines — what
are we left with?

‘We are left with the view that require-
ments elicitation should not be based on
capturing the needs of individual users.
Instead, it should focus on the interaction
of participants (social) rather than individ-
ual participants (cogni-
tive).

Along these lines,
Goguen and Charlotte
Linde have enumerated
the limitations of tradi-
tional elicitation tech-
niques (interviews, ques-
tionnaires, and protocol
analyses) and propose that
we can improve accuracy

y using conversational,
interaction, and discourse
analyses instead.®

Does the requirements-engineering
community need to completely reori-
ent itself toward this new, social, integrat-
ed perspective? No, but I am suggesting
that adopting a social perspective will let
us uncover elements that a purely techni-
cal perspective will miss.

There is this conundrum: The social
perspective requires that we ground our
observations in real-world settings, yet
system development requires formalism
and abstraction. This then is the thorny
problem facing requirements engineer-
ing. *

Jawed Siddidqi is the direc-
tor of the Computing Re-
search Centre at Sheffield-
Hallam University. He is
also a visiting researcher at
the Centre for Require-
ments and Foundations at
the Oxford University
Computing Laboratory.
His research interests are
software engineering, the human factors of software
development, requirements engineering, and anima-
tion of formal specification.

Siddigi received a BS in mathematics from the
University of London and an MS and a PhD in
computer science from the University of Aston in
Birmingham. He is a member of the British
Computer Society and the [EEE Computer Society.

His address is Sheffield-Hallam University,
School of Computing and Management Science,
Hallamshire Business Park, 100 Napier St., Sheffield
S11 8HD, UK; j.Lsiddiqi@shu.ac.uk.

19

mailto:j.l.siddiqi@shu.ac.uk

