guest editors” introductionc..........

20 Years Later

Arthur B. Pyster, Scicnce Applications International Corporation

Richard H. Thayer, Soft:ware Management Training LLC

little more than 20 years ago, we assembled several papers on
software engineering project management for the January 1984
edition of IEEE Transactions on Software Engineering. Those

papers portrayed the state of the practice in SEPM and looked

s grammer

Duality Assurance Expert

18 IEEE SOFTWARE Published by the |IEEE Computer Society 0740-7459/05/$20.00 © 2005 IEEE

into its future. We decided to revisit SEPM and
assemble another set of articles that reflect how
it has advanced over the past 20 years and of-
fer a fresh prediction of what lies ahead.

Where were we 20 years ago?

In 1984, as some of you will recall, there
was no Capability Maturity Model (first de-
scribed in a 1987 technical report by Watts
Humphrey) or ISO 9001 (approved in 1987).
The Project Management Institute was just of-
fering its certification program for the first time.
The US Department of Defense was the largest
creator of software technology, as demon-
strated by its invention of the Ada program-
ming language, sponsorship of the Software
Technology for Adaptable, Reliable Systems
program, and the formation of the Software
Engineering Institute. Strong, rigorous config-
uration management, quality assurance, re-
quirements management, formal reviews,
earned-value management, and other software
processes that are commonplace today were
then quite unusual. Three years earlier, Barry
Boehm had just defined the whole field of soft-
ware engineering economics with the publica-
tion of his landmark book of the same name
introducing Cocomo, the Constructive Cost
Model for software.

The papers in that 1984 special issue were

m Software Configuration Management by
Ed Bersoff,

B Software Engineering Economics by Barry
Boehm,

m Software Engineering Project Standards
by Martha Branstad and Patricia Powell,

m Software Project Management in a Small
Project Environment by Bill Bryant and
Stan Siegal,

B Project Management Planning by Jack
Cooper,

B Earned Value Technique by Norm Howes,

B In-house Training of Software Engineers
by Jim McGill,

B Software Quality Assurance by Fletcher
Buckley and Bob Poston,

m Software Engineering Projects by Walt
Scacchi, and

B Reviews, Walkthrus, and Inspections by
Gerald Weinberg and Daniel Freedman.

Several of those papers stand out even to-
day. Bersoff’s and Boehm’s articles were both

seminal. Bersoff’s article is still among the best
at describing the ins and outs of software con-
figuration management, which remains one of
SEPM’s most valuable tools. Cocomo retains
wide popularity and usefulness, having
spawned several updates, including Boehm’s
Cocomo II.

Branstad and Powell described the state of
the practice in software engineering standards
in 1984. They listed standards by the IEEE,
the US Department of Defense, and some Eu-
ropean software developers. At that time, the
IEEE had developed five software engineering
standards, so it was the most prolific stan-
dards developer, closely followed by the DoD.
Since that time, the DoD has gotten out of the
software standards business, the IEEE has de-
veloped approximately 36 standards, and the
ISO (International Organization for Standard-
ization) and the IEC (International Electro-
technical Commission) standard development
groups have grown much more prolific.

Howes’ paper on earned value called atten-
tion to another valuable management tool,
which has become extremely popular in the last
few years across the US government with
strong encouragement from the White House
Office of Management and Budget. ANSI Stan-
dard 748 for earned-value management, ap-
proved in 1998, elaborates on the process that
is partially automated by several popular com-
mercial tools. US government contracts now
routinely require companies to use an ANSI-
compliant earned-value management system.

Weinberg and Freedman wrote about three
types of software project review:

B acquirer-supplier review—a management
review used to determine the status of a
large software development project;

B inspection—a formal peer review used to
find errors in a software product; and

B walkthrough—an informal peer review
used to find errors in a software product.

Inspections have proven to be one of the most
valuable tools (if not the most valuable) for
finding a software product’s bugs. The US’s
NASA Space Shuttle program uses this tech-
nique extensively.

Where are we now?

Of course, many of the practices called out
in the 1984 issue are now much more well

Bersoif’s
article Is still
among the best
at describing
the Ins and outs
of software
configuration
management.

September/October 2005 I|EEE SOFTWARE 19

Projects that
would have
taken years to
complete In
1984 are now
being done In
months or even
weeks.

known. A catalyst for their spread has been
the popular CMM and its derivative, the Ca-
pability Maturity Model Integration (CMMI).
But what was their effect on organizations’
ability to deliver projects on time, within cost,
and with required performance? Unfortu-
nately, the 1995 Standish Group CHaos Re-
port and the more recent update in 2004 show
quite clearly that the more things change, the
more they stay the same. Despite the myriad
books, training, consultants, and tools that en-
able best practice, most projects still fail. Ac-
cording to the Standish Group, fewer than 30
percent of information technology projects
succeed, nearly 20 percent are canceled before
completion, and the remaining 50 percent are
challenged—that is, they’re seriously late, over
budget, or lacking expected features.

How is it possible that the best practices
called out in 1984 aren’t producing the desired
results? We believe there are two primary rea-
sons. First, even though development organiza-
tions commonly follow many of these practices
to some degree, most still don’t perform them
rigorously. Most software development organi-
zations are still Maturity Level 1 with respect to
either the CMM for Software or the CMMI.
Second, competitive pressures and national im-
peratives keep driving a stunning growth in
projects’ size, speed, and complexity. Projects
today produce two and three orders of magni-
tude more code than their counterparts did 20
years ago. As an example, Microsoft Windows
didn’t even appear until late 1985 and was ab-
solutely primitive by today’s standards. (Remem-
ber DOS?) Projects that would have taken years
to complete in 1984 are now being done in
months or even weeks. Organizational leaders
keep pushing what they demand from projects—
and project managers—to the point where fail-
ure remains common.

What has really changed in the last 20
years that the earlier special issue on SEPM
didn’t address? Among the most fundamental
changes have been these:

B The creation and broad adoption of SEPM-
related standards, especially the promi-
nence of ISO 9001 and the CMM in both
their original and latest incarnations. For
example, the CMM demands rigorous con-
figuration management, quality assurance,
peer reviews, and other techniques that the
1984 special issue highlighted.

20 IEEE SOFTWARE www.computer.org/software

B The backlash against the determinism of
the waterfall and big-bang approaches to
development and against the CMM’s plan-
ning and document focus. Spiral develop-
ment, incremental delivery, and agile meth-
ods are among the results of that backlash.

B The credentialing of project managers as
reflected in the Project Management Insti-
tute’s more than 150,000 members and the
newly emerging credential standards for
both systems engineers (through the Inter-
national Council on Systems Engineering)
and software engineers (through the IEEE).

m The ability to manage projects with a highly
distributed workforce through collabora-
tion technology made possible by the In-
ternet and the World Wide Web.

B The reality of product lines as a well-
defined software engineering discipline.

In this issue

The articles in the current special issue ad-
dress aspects of how these sea changes affect
SEPM.

Suzanne Garcia writes about standardiza-
tion as an adoption enabler for project man-
agement practice. In the context of half a dozen
standards, she analyzes where standards have
helped, what makes a good standard, and the
challenges that organizations face when adopt-
ing standards. Adopting the wrong standard
or too many standards, even if it’s trendy to do
so, can be detrimental to an organization.
Adopting a standard that requires an organiza-
tion to shift its culture too rapidly will likely
fail. Only in sustained crisis will people change
rapidly and stay changed.

Agile methods are a direct reaction to the
plan-driven software development approach the
CMM articulates. Reconciling the flexibility of
agile methods with the necessary rigor on larger
projects remains a challenge. Barry Boehm and
Richard Turner analyze that challenge and sug-
gest ways to address it. For example, they pro-
pose developing architectures that support
compartmentalization of agile and traditional
teams. That way, the right techniques can be
locally applied to the advantage of the project
as a whole.

Walker Royce’s analysis of successful soft-
ware management style is perhaps the most
controversial article in this issue. It’s also a re-
action to the plan-driven approach to software

development. Royce draws an analogy between
creating a movie and creating software. Both,
he asserts, have lots of scrap, but he doesn’t see
that as a failure—it’s an inherent part of the
creative process. Trying too hard to minimize
mistakes along the way stifles needed creativity
and flexibility. Both movie making and soft-
ware development are successful because of a
“steering leadership style rather than the de-
tailed plan-and-track leadership style encour-
aged by conventional wisdom.” He also argues
that required process rigor is fluid. The correct
answer is not either agility or rigorous plan-
ning, but each emphasized at the proper point
in the development process. According to
Royce, planning should generally be less de-
tailed and rigorous at the beginning of a proj-
ect and increase over time when more is known
on which to base detailed plans.

C. Venugopal drives one of Royce’s ideas to
an extreme. A software project that’s late or
over budget or that doesn’t meet its perform-
ance requirements is normally considered a
failure. Venugopal argues that the reason for
failure is often trying to crowd too much into
early releases. He proposes limiting early re-
quirements to a single or small subset of goals.
Most often, he argues, even a large, complex
system has a compact primary goal. It’s an-
other form of the 80-20 rule; that is, that 20
percent of the functionality provides 80 per-
cent of a system’s value. Initially, he argues,
strive only for the 20 percent most critical
functionality to achieve early success.

Distributed project management has be-
come the norm in today’s large projects. De-
spite every project manager’s desire to have
the entire team colocated, for all but the small-
est projects this almost never happens. Teams
are scattered across multiple companies, time
zones, cultures, and continents. The Internet
and World Wide Web have given project man-
agers a technology base of Web conferences,
whiteboards, instant messaging, and a host of
other tools for a distributed team to work to-
gether both synchronously and asynchronously.
Nevertheless, enormous process and cultural
challenges remain. Kenneth E. Nidiffer and
Dana Dolan look at how project management
is altered in such a world and provide a list of
potential enablers and current constraints on
those enablers.

The article by Paul C. Clements, Lawrence G.
Jones, John D. McGregor, and Linda M.

About the Authors

Arthur B. Pyster is senior vice president and director of systems engineering and inte-
grafion at Science Applications International Corporation. Prior to that, during part of the time
he worked on this issue, he was the deputy chief information officer of the US Federal Aviation
Administration. His research interests include systems engineering and software processes.
Among his accomplishments, he oversaw the development and application of three (MMs, was
the chief architect of the first integrated digital environment at TRW, created and operated the
information systems security program at the Federal Aviation Administration, and wrote Com-
piler Design and Construction. He is a senior member of the IEEE. He received his PhD in com-

puter and information sciences from Ohio State University. Contact him at pystera@saic.com.

Richard H. Thayer is a consultant and lecturer in software engineering and project
management and an emeritus professor of software engineering at California State University,
Sacramento. He is also a Certified Software Development Professional and a registered profes-
sional engineer; he edited the (SDP Resource Guide and developed the (SDP Exam Preparation
Course. He is a Fellow of the IEEE and a member of the IEEE Computer Society Golden Core
and the IEEE Software Engineering Standards Committee. He is a principal author of two IEEE
standards, including the Standard for Software Project Management Plans. He received his

PhD in elecirical engineering from the University of California, Santa Barbara. Contact him at

thayer@csus.edu.

Northrop describes software product lines, an
idea that has been around for two decades but
which is becoming a mainstream way of build-
ing software, whether for automobiles, tele-
phones, or a myriad of other domains. Success-
fully building product lines requires different
management approaches because there are re-
ally two different types of projects—those cre-
ating core reusable assets, and those applying
them. Getting the right mix of people in those
different types of projects, keeping reusable as-
sets refreshed, and understanding how to man-
age risk are substantial challenges.

Finally, J. Fernando Naveda and Stephen B.
Seidman write about the emerging credentialing
of software engineers, following the patterns set
by the Project Management Institute and the In-
ternational Council on Systems Engineering for
their constituencies. The notion of credentialing
software engineers has been controversial over
the years, with many disagreeing that the field
was mature enough to test for the correct foun-
dational knowledge. The emergence of an IEEE
credentialing program is a major milestone in
software engineering’s maturation.

wenty years is a very long time in the

computing field. Yet, SEPM’ progress

has been agonizingly slow in many ways,
probably because it’s driven more by human be-
havior than by technology. People change their be-
havior much more slowly than technology ad-
vances. However, progress is notable in some
areas, and this issue’s articles illustrate some of
the best advances in the field. @

September/October 2005

IEEE SOFTWARE

21

