
Babak Sadr
PARTA Corporation

Patricia J. Dousette
Litton Data Systems

I
This strategy solves

many problems typically

encountered during large

00 projects by creating

specialized work teams

and by dividing projects into

strategic and tactical areas.

0018-9162/96/$5 00 0 1996 IEEE

An 00
Project
Manauement

bject technology is seen by many as the Yellow Brick Road to
improved productivity, reliability, maintainability, and software 0 reusability. Because of this, the software development commu-

nity rushed to adopt OT.
As with all technological breakthroughs, OT has yielded successes and

failures. The failures have been due largely to inexperience and a lack of
planning by project managers for the transition to OT.

OT is tremendously helpful in achieving strategic goals and fulfilling
business needs. However, because it is relatively new, it requires a transi-
tion plan, and its implementation must be closely supervised.

NEEDS ASSESSMENT
We developed our strategy to manage 00 projects while working on a

project that involved more than 100 engineers and development centers
throughout the world. However, the strategy can be tailored for use in
projects of any size.

Our strategygrew out of the challenges we faced, including the need to
overcome coordination, logistical, and communication problems caused
by having development personnel invarious locations. In addition, to min-
imize development risks, we used Barry Boehm’s spiral development
mode1,l which calls for 00 projects to be developed iteratively.

We also designed our strategy to solve the type of problems we, and
many others, have encountered during 00 projects?

A lack of coherency in methodology and process across the enter-
prise causes backward incompatibility and product-line integration
problems. For customers, it reduces plug-and-play capabilities and
makes it harder to upgrade to newer product lines.
Architectural instability and incompleteness cause schedule delays
and results in software components that must be redesigned for each
development iteration. This also results in throwaway code and,
therefore, low developer morale.
A lack of staff familiarity with OT requires a substantial investment
in training. A software developer typically needs six months of train-
ing to understand 00 methodology, C+ +, and development tools.
This must be included in the development schedule to avoid project
delays.
Staff inexperience with OT leads to an overly complex system archi-
tecture and implementation, which can degrade maintainability, per-
formance, and reliability.
Because it is new, distributed OT software development is hard to
learn and use. Support tools are generally slow and unreliable, so
their use will hurt system performance.

September 1996

Lack of a code reuse strategy leads to redundant
implementations.

e Developers who inadequately evaluate off-the-shelf
products’ applicability to their projects may spend
time developing capabilities when existing products
already provide them (thus reinventing the wheel).
They may also use inappropriate product features in
system design, which may cause performance and
reliability problems.
Not having an 00 test environment and strategy
affects software implementation stability and relia-
bility.

PROJECT ORGANIZATION
We recommend that a project be divided into strategic

and tactical processes. This division will determine the
way you organize and manage the project.

Strategic process
This process addresses global concerns that have sys-

temwide ramification^.^ Strategic concerns include reuse
strategy, the definition of project deliverables, and the sys-
tem architecture, which guides system development. A
technical manager coordinates strategic activities.

Tactical process
This process defines the development team’s day-to-day

 operation^.^ Tactical concerns include software analysis,
design, implementation, and testing, which are carried
out iteratively until each object’s dynamic and static

behavior has been fully defined and imple-
mented. A project manager coordinates
tactical activities.

divided into
strategic and
tactical processes.
This division will
determine the
way you organize
and manage the
project. . .

Staff organization
The traditional organizational hierarchy

for a software development project does
not work well for a large 00 project, par-
ticularly one that has team members
spread out in a variety of locations.

It is better to use a group of cohesive,
specialized, and focused teams, each work-
ing on its own set of strategic and tactical
activities. This divides and thereby reduces
problems caused by the project’s complex-

ity and requirements, and also minimizes dependencies,
which makes the teams more self-sufficient. In addition,
this maximizes the degree to which tasks can be per-
formed in parallel, thereby reducing dead time and
increasing productivity.

.

PROJECT PLANNING

planning into strategic and tactical focus areas.
In keeping with our strategy, you should divide project

Strategic planning
You use strategic planning to develop a stable system

architecture, which provides the road map for developing
an 00 system.

Strategic project planning partitions project develop-
ment into three phases. The setup phase and architecture
definition phase generate the system architecture and

Computer

requirements, while the development phase implements
the software. Dividing your project into three phases par-
titions its logistical and technical needs, which also
reduces risk factors.

Figure 1 provides an overview of strategic planning
activities, showing the order in which teams performvar-
ious activities.

SETUP PHASE. In this phase, system engineers specify
system requirements, whichwill be used in the next phase
to design the system architecture. The rest of the devel-
opment organization works on the project’s infrastruc-
tural needs by, for example, undergoing training, prepar-
ing standards, establishing a documentation control sys-
tem, and installing a configuration management system.

We assume here that project management, systems
engineers, and support personnel (such as test, software
quality assurance, and software configuration manage-
ment) have already received OT training.

Since team dependencies are not critical in the setup
phase, teams can move on to the next phase’s activities as
soon as they accomplish their objectives for this phase.

0 Systems engineering team: The systems engineers
define system requirements based on customer and mar-
keting needs. For consistency, the format of the system
requirements and specifications should be based on a
development standard, such as the IEEE Software Stan-
dards4 or the US Department of Defense’s Mil-Std-498.5
Although these standards do not explicitly support the 00
paradigm, they add structure and definition to any devel-
opment process.

Generally, there is no object model during requirements
definition, so it is difficult and usuallyunnecessary to pre-
pare object specifications at this time.

* Development teams: Team members are trained in the
areas of analysis, design, language, and tools. Developers
who do not have 00 backgrounds generally need three
months of training and three months to refine and sharpen
their new skills.

They should attend a class to learn about 00 analysis
and design, and such methodologies and notations as the
Unified Modeling Language, the Object Modeling Tech-
nique, Booch, and Real-time Object Oriented Modeling
(ROOM) .z

An 00 programming class should relate 00 concepts to
the features of the chosen language. Developers can use 00
languages such as C + + , Java, and Ada 95 to implement an
object model. By taking a class that emphasizes 00 pro-
gramming instead of language syntax, developers will be
better able to move from analysis to implementation.

In addition, developers will need software training from
vendors on the use of software configuration management
and CASE tools, which are essential parts of an organiza-
tion’s infrastructure.

For companies that will be using distributed objects and
applications based on CORBA (Common Object Request
Broker Architecture), formal training in these areas is also
essential.*

Meanwhile, developers should be trained in software
standards and processes, which define the rules for devel-
opment activities.

We have found that about 80 hours of classroom train-

Environment/

Architecture
Setup phase definition phase Development phase

Specifying

requirements
Refining requirements and reviewing designs

i

(For each development cycle)

and integrating object models
00 training Prototyping

Maintaining and supporting the development environment
environment

I 1
Tracking development progress, measuring
software quality, and improving the process

Building software
standards and defining processes I

Figure 1. Overview of strategic development program. You divide strategic planning into three phases-
setup, architecture definition, and development. You also divide the people working on your project into
teams. The chart shows what each team works on during each phase, with the earliest activities on the left.

ing per person is necessary for a smooth transition to OT.
Training costs can be significant and must be planned for.

Environment/support team: This team installs and
tests new computing systems, software products, and
tools. These include the compiler and its supporting devel-
opment environment, development frameworks and tools
(such as GUI builders), an 00 CASE tool, document gen-
eration software tools, and software for tracking and
reporting problems. The environment/support team must
integrate commercial software tools into the development
environment and solve compatibility problems before for-
mal development begins.

If the organization does not have an adequate commu-
nications system, the environment/support team must
establish it now. E-mail, electronic file transfer, telephone
conferencing and videoconferencing capabilities, and fax
machines are critical, particularly when project members
are in different locations.

The environment/support team also must establish an
electronic documentation control system. A configuration
management tool works well as the foundation for the
documentation control system, Such tools help the orga-
nization control the data and documents that will be pro-
duced and disseminated later in the development cycle.

Software process team: The SPT plans, tracks, and over-
sees software development. The team builds an 00 pro-
ject's development standards and processes around the
00 paradigm. Development organizations must have for-
mal software standards and processes to promote com-
munication and avoid confusion in the execution of
development tasks.9Jo This improves the quality of prod-

ucts and organizational processes.
The SPT, which should consist of 00 and softwart

process experts, also specifies the criteria for measurini
the effectiveness of managerial and technical activities.

Specifically, the team works on software-design docu
ment formats, which capture an object model's dynamic
and static behavior. Their content should be object-focusec
rather than procedural, in contrast to traditional desigr
documents.

The SPT also works on the organization's software cod
ing standard, which creates a homogeneous style and pre
sentation format for all program source files and whicl-
can support a formal test environment by creating tes
interfaces that are not intrusive.'l

By standardizing source file content, layout, and docu
mentation style, team members can use software tools tc
generate high-level documents, such as a software refer
ence manual, from source files. These tools streamline tht
documentation process by incorporating function com
ment blocks in source files and by extracting and export
ing applicable information to a word processor file."

In addition, the SPT builds software test standards
which identify the testing strategy and environment fo
deliverable software. The team also specifies developmen
processes by identifying the organization's teams, mem
bership, roles, responsibilities, and intergroup relations.

ARCHITECTURE DEFINITION PHASE. In this phase, thc
system architecture is developed from the system require
ments. A specialized team of systems engineers and devel
opers focus on defining a stable system architecture.

September 1996

Initiation of system development without this stable
framework greatly increases development risk and leads
to quality-related problems and nonreusable components.

While the architecture team is designing the system archi-
tecture, other teams are preparing for the development
phase. In addition, software processes, standards, and
development methods are prototyped and instantiated.
This refines key processes, reveals obstacles and problems,
resolves organizational and staffing needs, and gives
development teams more experience with OT and support
tools.

Archztecture team: This team consists of systems engi-
neers and designers who analyze system requirements and
define the system architecture. By defining the major soft-
ware components (such as subsystems, modules, and their
interfaces), the system architecture defines the framework
from which development teams will work. For projects
based on Boehm’s spiral mode1,l project management uses

this framework to specify each develop-
ment cycle’s software deliverables.

e Development teams: These teams
develop software prototypes. For instance,
one team may create a preliminary GUI
specification.

By creating prototypes, developers gain
experience with 00 analysis, design, and
programming, as well as support tools.
Although these work products are not
reusable, the process lets developers validate
basic concepts in key areas of the system and
generate early feedback on technical issues
and development processes.

Environment/support team: This team
continues to establish a mature develop-

ment environment, and defines and develops the envi-
ronment for unit and integration testing.

0 Softwareprocess team: This team refines software stan-
dards and processes by validating them. Selected devel-
opment teams test the standards on a limited basis. For
example, the GUI team will develop the software for the
GUI prototype based on the specified coding standards.
This approach provides early feedback on the effective-
ness of the standards and processes.

DEVELOPMENT PHASE. Using the system architecture,
the technical management team begins a series of devel-
opment cycles, using Boehm’s spiral model.1 For each
development cycle, management identifies subsystems
and modules that must be developed, tested, and inte-
grated. Meanwhile, processes and standards are further
refined.

At the end of each development cycle, project teams
should meet to discuss the obstacles they encountered and
the lessons they learned. This creates a system for track-
ing problems and resolutions.

Systems engineering team: Systems engineers turn
their attention to refining and updating software require-
ments. They also determine whether object models cre-
ated by the development teams comply with system
requirements.

* Development teams: During each development cycle,
these teams analyze the software requirements and

design object models for the architectural components
on which they are working. Peer reviews are conducted
to ensure that each component design provides the fea-
tures and interfaces required to meet the client compo-
nent’s needs.

The development teams also implement object models
and subject them to unit and integration testing.

0 Environment/support team: This team provides the
traditional system “housekeeping” and administrative sup-
port, and also maintains configuration management of
object models, documentation, and source code.

0 Software process team: This team performs risk assess-
ment for future development cycles, tracks the progress
of development, and collects data for measuring software
quality.

Tactical planning
Because each phase builds on the previous phase, the

project must have a technical management team to prior-
itize and focus on each phase’s key areas. Companies will
decide many of the details of tactical planning based on
their standard operating procedures. However, some gen-
eral principles apply.

SETUP PHASE. Without proper logistical support by the
environment/support team, a project may encounter
severe configuration and integration problems in the
development phase. Meanwhile, the software processes
that the SPT is putting in place must streamline develop-
ment by specifylng only processes and tasks that are nec-
essary to enhance work on the project. These processes
must be tested on a limited basis and then must be refined
before they are fully adopted.

ARCHITECTURE DEFINITION PHASE. Project manage-
ment must make sure the architecture team addresses nine
key issues. This will refine the system architecture and
establish the details of the software architecture.

Performance: For real-time applications, an object
model must encompass the system’s timing aspect, which
includes the real-time computational and operational
requirements for the applicable subsystems and modules.6
The development teams accommodate performance
requirements in the component design, thus minimizing
the need for subsequent redesigns and modifications.

The software-development platforms, tools, and
methodologies used must support the system performance
requirements. For example, you must determine the effect
of a COMA platform on a distributed application’s per-
formance prior to selecting the platform.

Error handling: When an error occurs, the objects
within a module may need to notify objects in other mod-
ules. Sharing and propagating errors is part of the mod-
ules’ design interface, which means error detection and
recovery are critical. Development teams can accomplish
this by using a systemwide interface provided by a stan-
dardized error detection and reporting mechanism.

Fault tolerance: Using the system requirements, the
architecture team specifies fault modes and identifies the
affected modules’ behavior.

Concurrency: In the case of distributed systems, the
object model must address concurrency issues and incor-

Computer

porate strategies for avoiding deadlocks
caused when multiple processes try to
access an object.

Connectivity: A network interface may
affect the system architecture. By consid-
ering data bandwidth and related connec-
tivity issues during high-level analysis and
design, the architecture team can avoid
architectural design flaws and shortcom-
ings.

User interface: An easy-to-use interface
is a key marketing requirement, so the user
interface’s design should start in the early
stages of system development. This lets cus-
tomers work with the interface early
enough in the process to provide useful
feedback. This also gives the interface time
to evolve and mature before reaching the
market.

Off-the-shelfproducts: The use of these
products can significantly reduce develop-
ment time. In addition, the use of generic
interfaces can minimize dependencies on
vendor products.

A project team should learn about off-
the-shelf operating systems, hardware
platforms, development tools, software
development environments, databases,

-
Reauirements traceabilitv

Requirements traceability is an important part of any 00
development strategy. You use the process, which begins in the
requirements analysis phase, t o verify the correct and complete
implementation of the system software.

Requirements analysis allocates system requirements t o soft-
ware components. The correct allocation of these requirements
can be documented using a commercial database that produces
a requirements traceability matrix (RTM). The database provides
automation and flexibility.

The RTM provides the project’s design and implementation his-

and other tools that can be used on the project.2
For the software components that will use off-the-shelf

products, the team must specify design requirements and
guidelines that will minimize dependencies between the
products and the components under development. This
will minimize the number of changes that product
upgrades will cause.

System requirements traceability: Analyzing require-
ments and verifying a design is tedious in large-scale sys-
tem development. Manual verification is neither feasible
nor desirable. Instead, you should use a database to map
system and software requirements to the appropriate
modules. Using an off-the-shelf database, the require-
ments are documented in requirements traceability matrix
tables (see the sidebar “Requirements traceability”). These
tables typically list, for each testable requirement, its
source, its title and description, the design component to
which it is allocated, the class and object that implements
it, and the test reference that verifies it.

The quality assurance team also uses the matrix to ver-
ify object models’ adherence to system requirements. Most
importantly, by specifymg relevant requirements for a
module, the matrix lets development teams focus their 00
analysis and design on the applicable requirements.

Interoperubility: To achieve interoperability, the com-
mon features and capabilities of a company’s product lines
are specified in a set of core components. Using core soft-
ware components in various products enhances software
reusability and enterprise coherency.

DEVELOPMENT PHASE. In the development phase, the
development teams develop an object model for their
assigned modules and subsystems. Because this phase can
be divided into several development cycles, you must insti-

tute appropriate reviews to ensure coherency between i he
object modules developed in each cycle.

Design coherency and reuse strategy: You should adopt
a reuse strategy early in the design process. For example,
you should review the object models created by different
development teams for common design patterns.10 The
creation of common libraries could eliminate redundan-
cies and enhance coherency across module boundaries.

Because developers use an iterative approach to design
and implement 00 projects, you should review the design
of new modules in terms of previously developed class
libraries, to identify similarities and differences.

Changes to an existing class library may require sub-
stantial interface and design changes. You should evaluate
the extent of the redevelopment, retesting, and revalida-
tion that would be necessary to determine whether it
would be better to modify and reuse a class library 01 to
develop a new library.

Standard class libraries: Some classes in the model can
be implemented by using standard class libraries. In terms
of maintainability, testability, reusability, and portability,
this is better than using custom implementations.

Legacy software: Using existing non-00 software
libraries eases a development organization’s transition to
00 methodology. An 00 software wrapper can use an
adapter class to hide the use of a non-00 legacy compo-
nent in the system implementation. This adapter class does
not provide any additional functionality except for minor
and hidden data transformations that its member func-
tions may perform to accommodate the use of existing
products.12 If the legacy software implementation is later
replaced by an internal implementation or another ven-
dor’s tool, the adapter class keeps this from affecting i:he
rest of the software design.

September 1996

Includes an overview of the new
Unified Modeling Language
and Booch notation!

Object-Oriented
Programming using C++
by Babak Sadr
Foreword by Grady Booch

This book creates a balance
between OOP and C++ in its
coverage of the design and

implementation of these approaches. I t provides
formal definitions for object-oriented concepts and
describes how they relate to features in C++. The
book uses graphical presentations to amplify the
concepts featured in the text. The text uses an
object-oriented notation that conveys the design of a
system in clear and standard manner. This book
primarily uses Booch-93 notation. I t also provides an
overview of the Unified Modeling Language (UML)
which combines the Object Modeling Technique and
Booch notations. The UML was developed by James
Rumbaugh, Ivar Jacobsen, and Grady Booch a t
Rational Software Corporation. The presentation of
Booch-93 and the UML allows you to select the
notation that is most appropriate for your design.

This book provides you with an overview of object-
oriented design, object-oriented programming, and
correlates the features in C++ to the framework of
an object model. To better enable you to build a solid
foundation of the language, the text relates encapsu-
lation, abstraction, modularity, and design hierar-
chies from the object model to C++ features. In
addition, it introduces you to advanced topics such
as distributed objects, including concurrency and
persistence issues. The book is accompanied by a
disk that contains the examples in the text.

Contents: Object-Oriented Design * Object Model
Development Object-Oriented Programming
(OOP)usingC++ e Basics ofC++ * Class *
Functions Memory Management * Error
Detection and Recovery * Inheritance e Polymor-
phism * Templates * Distributed Objects *
Introduction to JAVA * Unified Modeling Language

450 pages. February 1997. Hardcover. lSBN 0-8 186-7733-3.
Catalog # BP07733 - $35.00 Members / $40.00 List

OUR STRATEGY IS BASED on our experiences and is not
meant to be used like a recipe in a cookbook. You must
build on this blueprint and customize it to meet the needs
of your projects and your work environment.

In addition, if you are considering an OT project, you
should hire an industry expert on 00 adaptation and
training. This expert can help design a transition program
for your company.2 I

References
1. B. Boehm, “A Spiral Model of Software Development and

Enhancement,” Computer, May 1988, pp. 61-72.
2. M.F. Fayad, W. Tsai, and M.L. Fulghum, “Transition to Object-

Oriented Software Development,” Comm. ACM, Feb. 1996,

3. G. Booch, Object-Oriented Ana~sysis and Design with Applica-

4. IEEESoftware Standards, IEEE, Piscataway, N.J., 1994.
5. Mil-Std-498, Military Standard: Defense System Software

Development, US Dept. of Defense, Washington, D.C., 1995.
6. B. Selic, G. Gullekson, and P. Ward, Real-Time Object-

OrientedModeling, John Wiley and Sons, New York, 1994.
7. G. Booch and J. Rumbaugh, Unqied Method for Object-

OrientedDevelopmentDocumentation Set, Version 0.8, Ratio-
nal Software, Santa Clara, Calif., 1995.

8. Common Object RequestBrokerArchitecture (C0RBA):Archi-
tecture and Specification, Version 2.0, Object Management
Group, Framingham, Mass., 1995.

9. ISO-9000, International Standard: QualipManagement and
QualiQ-Assurance Standards, KO, Geneva, 1987.

10. M. Paulk and C. Weber, KeyPractices ofthe CapabilityMatu-
r i g Model, Software Eng. Inst., Pittsburgh, 1993.

11. B. Sadr, Fundamentals and Applications of Object-Oriented
Programming Using C+ +, UCLA Academic Publishing Ser-
vices, Los Angeles, 1995.

12. E. Gamma et al.,DesignPatterns:Elements ofobject-Oriented
Software, Addison-Wesley, Reading, Mass., 1994.

pp. 108-121.

tions, Addison-Wesley, Reading, Mass., 1994.

B a b a k S a d r is a n electrical engineer a t PARTA Corp., a
software development consulting and research company. He
also teaches 00-related classes a t UCLA. His expertise is i n
software development, parallelprocessing, and 00 design.
He received a BS and a n MS i n electrical engineeringfrom
the University of Southern Ca1i;fornia.

P a t r i c i a J . Dousette is a senior technical staff member
a t Litton Data Systems, where she is a member of the
Advanced Products Group. She also teaches programming
language courses at UCLA. Her expertise is i n software
process definition and instantiation. She received a BS and
a n MS i n mathematics f r o m California State Polytechnic
Universiy, San Luis Obispo, and California State Univer-
si& Los Angeles, respectively.

Contact Sadr a t (818) 889-5333 or Dousette at (818) 597-
5388.

