Implementing
Risk Management
on Software
Intensive Projects

EDMUND H. CONROW, Independent Consultant
PATRICIA S. SHISHIDO, TRW Systems Integration Group

Rising costs, falli
slipping schedules
common problems o
large-scale software
projects. The authors
cribe key risk issues

171 0Me

IEEE SOFTWARE

e o

recent survey by the Standish Group of 365 re-
spondents and 8,380 commercial software-inten-
sive projects indicated that 53 percent of the pro-
jects were “challenged”: they were over budget,
behind schedule, or had fewer features and func-
tions than originally specified, and 31 percent of
the projects were canceled.! On average, these projects had cost
increases of 189 percent and schedule slippage of 222 percent ver-
sus the original estimates at the time they were completed or can-
celed. In addition, the completed projects had an average of only
61 percent of the originally specified features and functions.
Commercial projects do not suffer these problems alone.
Software-intensive defense projects also suffer from cost growth,
schedule slippage, and performance degradations and are often re-
garded as high risk. Former US Deputy Assistant Secretary of the
Air Force Lloyd K. Mosemann said:

0740-7459/97/$10.00 © 1997 |EEE

Risk Grouping

TABLE 1
A SUMMARY OF KEY RISK ISSUES

Software Risk Issues

Project level

¢ Lack of user involvement

+ Excessive, immature, unrealistic, or unstable requirements

4 Underestimation of project complexity or dynamic nature

Projectateributes

4 Performance shortfalls (includes errors and quality)
¢ Unrealistic cost or schedule (estimates and/or allocated amounts)

Management

Engineering

+ Ineffective project management (multiple levels possible)

+ Ineffective integration, assembly and test; quality control;
specialty engineering, or systems engineering (multiple levels possible)
¢ Unantcipated difficulties associated with the user interface

Work environment

+ Immature or untried design, process, or technologies selected
¢ Inadequate work plans or configuration control ,
+ Inappropriate methods or tool sélection or inaccurate metrics

¢ Poor training

Other

Software is so vital to military
systems that, without it, most could
not operate at all. Its importance to
overgll systems performance, and the
generally accepted notion that
software is always inadequate,
makes software the bighest visk item
and mmust be steadfastly managed
Failure to identify and address visk
bas been the downfall of many DoD
acquisition programs. The system
cornponent with the greatest inher-
ent visk has bistorically been

software.”
DEFINING RISK

Risk is the probability (or likelihood)
of failing to achieve particular cost, per-
formance, and schedule objectives, and
the consequence of failing to achieve
those objectives. The word risk is often
used incorrectly to represent only the
probability term. When used correctly,
“risk” represents the combined effect of
the probabilty and consequence terms.

Quantitative cost and schedule risk as-
sessment methodologies can ideally esti-
mate risk, since probabilities of occur-
rence result from the sitnulation process
and the consequence term directly repre<
sents either cost (dollars) or schedule
(tme). Ordinal risk assessment scales can

"

+ Inadequate or excessive documentation Or review process
+ Legal or contractual issues (such as litigation; malpraetice, ownership)
+ Obsolescence (includes excessive schedule length)
+ Unanticipated difficulties with subcontracted items
_# Unanticipated maintenance and/or support costs

also be used to perform risk analyses. In
this case, the word “probability” in the de-
finition of risk given above is replaced by
the word “uancertainty.” (Uncertainty is
especially appropriate for ordinal values,
which almost never represent probabili-
ties.) Ordinal assessment scales do not
represent risk, the combined effect of un-
certainty and consequence, but express the
level of uncertainty and/or state of matu-
rity for the “uncertainty” item being eval-
uated or level of consequence for the im-
pact associated with that item being
evaluated and do not require assumptions
about probability distributions. True risk
values can almost never be mathematically
computed from ordinal “uncertainty” and
consequence scales and the results from
such operations on uncalibrated scales are
generally meaningless.?

SOURCES OF PROJECT RISK

Numerous studies have identified risk
contributors in software-intensive projects.
Based upon our examination of many of
these studies, > * % we identified 150 can-
didate risk issues. We then aggregated and

summarized these risks, as Table 1 shows.

Additional risk issves. For moderate- and
high-complexity development projects,

several issues can contribute significantly
to increased costs and schedule slippage,
such as

4 using a performance-dominated
requirements generation process that be-
gins before you formally start your de-
velopment process, B

¢ starting a project with a budget and
schedule that is inadequate for the de-
sired performance level,

¢ using a performance-driven design
and development process,

¢ establishing a design that is near
the feasible limit of achievable perfor-
mance (where the magnitudes of the first
and second derivatives of cost with re-
spect to performance can be very large),

¢ being overly optimistic in assessing
the limits of performance achievable for
a given budget and schedule, and

+ making major project design deci-
sions before the relationship between
cost, performance, and schedule is un-
derstood.!!

Each of these items generally con-
tributes to

¢ overoptimism in establishing and
estimating adequate project cost and
schedule, ‘

¢ underestimation of cost and sched-
ule risk, and

¢ an eventual increase in project cost
and schedule during development.!!

MAY/JUNE 1997

High-risk designs can occur when the
buyer and seller focus primarily on in-
creased performance, and thus it comes
to dominate the resulting design, even if
itincreases project risk as well as cost and
schedule. The situation is made even
worse because the risk level in complex
projects is routinely underestimated,
often due to human and organizational
behavioral issues that are difficult to solve
or even identify.!

RISK MANAGEMENT IN
DEFENSE PROGRAMS

The US Department of Defense has
developed a number of policies empha-
sizing system and software risk manage-
ment. At the system level, DoD Directive
5000.1'2 states in Section D.1.d:

Program managers and other acqui-
sition managers shall continually
assess program visks. Risks must be
well understood, and visk manage-
ment approaches developed, before
decision authorities can authorize

a program to proceed into the next
phase of the acquisition process...

At the software level, MIL-STD-498"
(now becoming EIA/IEEEE 7-STD-016)
states in Section 5.19.1:

The developer shall perform risk
management thronghout the software
development process. The developer
shall identify, analyze, and priovitize
the areas of the software development
project that involve potential techni-
cal, cost, or schedule risks; develop
strategies for managing those visks;
record the visks and strategies in the
software development plan; and im-
plement the strategies in accordance
with the plan.

However, these policies have notbeen
sufficient to achieve successful system
and software risk management to date.

Common deficiencies. Four risk manage-
ment deficiencies have been observed in

|EEE SOFTWARE

several DoD development programs.'*

These deficiencies are also often found
in civilian development projects.

First, both the buyer (such as the gov-
ernment) and seller (contractor) often
have risk management processes that are
weakly structured or “ad hoc.” There
may be no clearly delineated mechanism
in place for managing program risk (such
as organizational responsibilities, analy-
ses, and products), or if a risk manage-
ment process exists, it may be weakly im-
plemented or exist on paper only. Even
though risk management is required of
all major defense development programs,
no single set of guidelines exists as to how
the risk management process should be
implemented. And, although “ad hoc”
risk management implementation may
be tolerable for projects with relatively
low to moderate complexity or technol-
ogy, it can cause turmoil in projects that
push the state of the art.

Second, risk assessment is often too
subjective and not adequately docu-
mented.

¢ The prescribed risk assessment cat-
egories can be overly broad (such as man-
agement, technical). This makes it diffi-
cult to evaluate results and implement a

viable, measurable risk handling strategy.
+ A weak risk assessment methodol-
ogy can introduce considerable doubt as
to the accuracy and value of the results.
¢ Ordinal risk assessment scales are
often incorrectly applied. Mathe-
matical operations cannot be applied
to scores obtained from uncalibrated
ordinal risk assessment scales. Risk val-
ues generated by mathematical opera-
tions on uncalibrated ordinal scales will
almost always be meaningless and may

" hide true risk issues.’

¢ The risks may be assigned to broad
categories (such as low, medium, and
high) without sufficient detail to make
the nature of the risk comprehensible.

¢ The buyer and seller may use dif-
ferent, incompatible risk assessment
methodologies, which makes comparing
results difficult if not impossible.

Third, the risk assessment process
generally emphasizes the probability as-
sociated with a specific event and gives
less attention to its consequence. How-
ever, risk is the combination of an
event’s probability 4nd consequence.
You thus must analyze and track both
factors over time.

Fourth, program risk assessments and

Risk documentation

i

Figure 1. Good risk management consists of planning, assessment, bandling, and mon-

itoring steps coupled in an integrated, closed-loop fashion and performed iteratively
throughout the program’s life. Figure derived from material courtesy of US DoD.”?

risk-handling plans are often unlinked
and may be prepared on an as-needed
basis, with limited tracking against key
program miilestones.

~ performance

requirements

 was one of our
_ top priorities
- from the start.

Solid frameworks. To address these de-
ficiencies, the DoD has been evolving risk
management frameworks to ensure risk
management approaches are complete
and consistent. A good recent example is
shown in Figure 1, which extends
Boehm’s risk management framework. !¢

DoD contractors are also elaborating
on such frameworks to develop and apply
risk-driven process models. The TRW
project discussed below successfully ap-
plied such a model to complete a software-
intensive project with numerous risks

within its fixed budget and schedule.

IMPLEMENTING
RISK MANAGEMENT

The TRW projectis a large software-
intensive command and control system
developed using the TRW Ada Process
Model,'” an extension of the risk-driven
Spiral Model,’ and a reusable C3 soft-
ware architecture (network architecture
services). The system consists of real-
time processing of input messages from
various external sources, algorithm pro-
cessing, data display, and processing out-
put messages to various other external
systems with very tight performance and
high-reliability requirements. TRW had
complete responsibility for system engi-
neering, design, development, and de-
ployment. The operational software

consists of over one million lines of Ada
source code.

Key challenges. The project presented
us with several key challenges.

¢ Our driving performance require-
ments were one-second display genera-
tions, two-second port-to-port message-
processing times, and 50 percent CPU
and memory utilization limits.

¢ Other contractors developed ex-
ternal interfaces concurrently.

+ We interacted extensively with
users to define algorithms and displays.

¢ The requirements for the message
sets, displays, algorithms, and protocols
evolved throughout the life of the project.

¢ We had a fixed price contract.

To address these challenges, we
needed a flexible architecture and design.
We also had to uncover potential risk is-
sues early and develop a process that let
us make changes easily. To accomplish
this, we used “building blocks” of suc-
cess: measurable metrics built on a foun-
dation of management visibility. The key
building blocks consisted of

+ aflexible and easily modifiable soft-
ware architecture,

4 asoftware engineering process that
let us make changes throughout the de-
velopment cycle (TRW Ada Process
Model),

¢ a suitable development environ-
ment (toolset), and

¢ trained personnel.

Our project succeeded because of
these building blocks. If we had ne-
glected any one of them, we may have
failed to deliver the system on schedule
and within budget.

Priorities. Mecting performance re-
quirements was one of our top priorities
from the start. The initial project cost and
schedule were sufficient to meet the ini-
tial performance level required, albeit
with identified risk items. When re-
quirements were added and changed, we
analyzed the potential impact on cost,
performance, and schedule. Because these
changes usually increased project com-

plexity, additional risk items were ident-
fied and tracked. The TRW Ada Process
Model can support requirements changes
and new project increments because it has
an incremental and evolutionary method
of handling new-capability builds. Thus,
when new requirements were added after
the critical design review, we did not have
to restart the whole system development
process; we completed the increments
under development while planning and
designing the new increment so it could
be integrated with the previous ones. The
priorities associated with meeting cost,
performance, schedule requirements, and
goals were equally important because we
had a fixed price contract, other systems
depended on our meeting the delivery
schedule, and performance was very im-
portant to the users. We completed the
project on schedule and within budget.
Risk management—along with the
proper use of metrics—was an integral
part of the management process through-
out the project’s life cycle.

RISK MANAGEMENT OVERVIEW

Our project had a risk review hoard led
by the project manager. The RRB met
monthly during the project’s intensive re-
quirements definition, design, and inte-
gration phases (during both the concept
definition and full scale development con-
tracts). The RRB included representatives
from each of the functional and support
areas (systems and hardware engineering
and test, software, quality assurance, con-
figuration management, and so on) to en-
sure visibility across the affected areas.

Our risk management process was it-
erative, with documented feedback to
both project management and the cus-
tomer. This process had four basic steps
that map to steps in Figure 1: identifica-
tion (assessment), assessment (analysis),
mitigation planning (handling), and sta-
tus and control (monitoring).

Risks were documented and included
a short description of the risk type (cost,
schedule, technical); severity (low, mod-

MAY/JUNE 1997

erate, high), which we determined by
qualitatively assessing the potential for oc-
currence coupled with the potential mag-
nitude of the impact; risk mitigation plan;
and status of the risk mitigation activity.
Everyone on the project was encouraged
to identify risks during any management
or technical meeting (such as the soft-
ware/systems engineering monthly review
or in daily engineering activities).

Once arisk item was placed under RRB

control, a risk mitigation plan was created
and assigned to a responsible person. The
RRB then evaluated and approved the plan
for implementation, reviewed the status of
active risk items/mitigation plans, and
modified plans (such as adding new mit-
gation efforts or modifying existing ef-
forts). Risk items were tracked until the
risk was reduced to an acceptable level.
These risk items were discussed with the
customer through daily interactions and
the program management reviews via the
Top 10 risks/concerns.

For example, we monitored the esti-
mated system software size versus actu-
als from the very beginning and found a
trend: the software-estimated total size
was increasing. Analysis of the software
confirmed that the projected growth was
real. Our risk mitigation plan resulted in
our developing tools that generated Ada
source lines of code (commercial tools
were not available). This increased pro-
ductivity, reduced the risk, and helped us
meet tight cost and schedule constraints.

KEY RISK ISSUES

The following points show how we
dealt with the risk issues identified in
Table 1.

¢ Excessive, immature, unrealistic, or
unstable requirements. Prior to starting
this project, this risk was one of the main
reasons TRW’s large software-intensive
projects experienced cost overruns and
schedule slips. To address this major risk
area, we used the TRW Ada Process
Model. With this process model, you
specify not just your current project re-

IEEE SOFTWARE

quirements, but plan for their likely di-
rections of growth and change. The
model then uses Parnas’ information hid-
ing techniques'® to modularize the soft-
ware architecture to facilitate anticipated
changes. Several other things also helped
us contain the potential impact of re-
quirements changes: a well-defined and
agreed-upon change control process,
metrics to track requirements growth
and stability, and allocating capabilities
to the various increments.

& Lack of user involvement. Prior to the
start of this project, TRW had extensive
customer involvement, but little user in-
volvement, and thus large projects with
human-machine interfaces often failed
to meet user expectations. T'o address
this risk area, the project used extensive
prototyping and demonstrated func-
tional capabilides as part of the early re-
views (such as design walkthroughs).
This prototype evolved into the opera-
tional system. Thus, unlike traditional
paper design reviews, users could see the
displays and interactions to be builtinto
the final system before CDR was com-
pleted. To build flexibility into the sys-
tem, we developed an operational capa-
bility to modify display formats. This
process model also included a longer de-
sign phase to ensure that there was suffi-
cient time to prototype functional capa-
bilities and to get user concurrence. The
usual schedule problems that occur dur-
ing integration did not happen because
the actual system integration started dur-
ing the prototyping activities.

TRW worked with the acquisition
customer and end users in working
groups to develop the details of displays
and algorithms. The representatives had
the authority to make technical decisions.
These working groups were key. The
system was very complex, and early
analyses and decisions resolved many
users’ concerns. Waiting until the tradi-
tional end of the development cycle to
do the analysis and make decisions to in-
corporate new enhancements would have
led to both cost growth and schedule
slippage—not only to the development

effort, but to those depending on the sys-
tem being operational by a certain date.

¢ Underestimation of project complexity.
Based on previous experience, we knew
that changes would occur throughout the
development process. We selected the
"TRW Ada Process Model because its in-
cremental, evolutionary approach would
help us address the project’s complexity
and dynamic nature. The fall of the
Berlin Wall, for example, had a major
impact on the system’s operational con-
cept and requirements.

¢ Performance shortfalls. Because we
had very tight performance requirements,
we addressed this risk during the proposal
preparation phase. In the systems engi-
neering area, performance modeling was
initiated at the beginning of the project.
As the design evolved, the model was up-
dated; when potential problem areas were
identified, they were transmitted to the
RRB. In addition to the performance
modeling activities, the actual software ar-
chitecture skeleton was built using the
network architecture services, and exe-
cuted with stubs to simulate the process-
ing. Since the software architecture skele-
ton was built using a code-generation tool,
it was easy to change the architecture
quickly and with minimal impact to the
ongoing design/implementation work.
This let us examine different hardware
and software design alternatives very eatly,
which minimized the potential cost and
schedule impact that might have occurred
if a traditional development approach was

used. For example, many types of perfor-
mance problems cannot be identified until
the system is integrated, which usually oc-
curs after coding and unit level testing are
complete. Again, since we started system
integration during the design phase, we

could address performance issues early.
¢ Unrealistic cost or schedule estimates.

We conducted several trade-off studies

using the Ada Cocomo cost model to de-

Reviews ensured
that we identified
problems early

termine a workable combination of func-
tionality, budget, and schedule.

¢ Ineffective project management. From
the start, we had several different types of
periodic reviews involving everyone from
the hands-on engineer to the project
manager. These included reviews of cost,
schedule, technology, systems engineer-
ing status, software engineering status,
and risk review boards. These reviews, to-
gether with the use of metrics, ensured
that we identified potential problems
early and handled them before they af-
fected the project significantly.

¢ Ineffective integration, assembly and
test, quality control, and so on. We used Ada
package specifications during the design
phase to consistency-check software in-
terfaces, thus accomplishing significant
integration prior to coding rather than
waiting until integration testing, which
costs more.

¢ Unanticipated user interface difficulties.
See “Lack of user involvement” above.

& Immature or unirvied design, processes,
or technologies. The TRW Ada Process
Model was a new concept for the cus-
tomer. To gain customer acceptance, we
met several times to discuss it and the im-
plementation approach. To ensure that
the process model was working, we mon-
itored metrics throughout the project de~
velopment phase. For example, we mod-
ified the development process slightly

when we moved responsibility for system
integration from the independent test
group to the software development
group. This increased efficiency during
the prototyping and integration activi-
tes and contributed to developers’ pride
of ownership when their software was in-
tegrated into the systemn.

¢ Inadequate work plans ov configuration
control. Based on TRW?’s prior experience,
we recognized that detailed plans and solid
configuration control were very important
to project success. We thus developed,
maintained, and used detailed work plans
and configuration management proce-
dures throughout the development cycle.
One of the key configuration control tools
was the hierarchical testbed, which auto-
mated version control and the software
change order tracking process. Quality as-
surance personnel conducted periodic au-
dits of the various configurations to ensure
configuration control was maintained
from the beginning of the project to com-
pletion of the operadonal system.

& Inappropriate merbods or tool selection
or inaccurate metrics. We evaluated the
set of metrics throughout the project.
We tailored the set of metrics to insure
that it was useful for trend analysis and
eliminated extraneous or outdated in-
formation to reduce cost and documen-
tation burdens.

+ Poor training. In 1987, the DoD Ada
mandate was fairly new and, because Ada
was a new Janguage, TRW did not have
many Ada developers. Prior to the pro-
ject contract award, TRW setup Ada lan-
guage training for more than 100 people.
TRW setup additional training for soft-
ware engineers, including integrators and
testers, on the Rational hardware devel-
opment environment. We also had a
training plan that tracked and identified
the required and suggested training for
each software engineer on the project.

¢ Inadequate or excessive documenta-
tion ov review process. Data item de-
scriptions were tailored prior to the
contract award and throughout the var-
ious project phases. The minimized
redundancy helped reduce the docu-

mentation that had to be generated,
maintained, and reviewed.

Early in the project, customer team
members made numerous comments on
the many products they reviewed. These
comments were then analyzed, catego-
rized, and prioritized by the commenta-
tors. We gave the most attention to the
higher priority comments. Meetings
(which included commentators) were
held to resolve comments and incorpo-
rate agreed upon changes. This elimi-
nated several cycles of comments and re-
visions that usually occur when there is
no dialogue between the commentator
and document author.

& Legal or comtractual issues. These did
not apply on this project.

¢ Obsolescence. Available technology
changed at an accelerating pace over the
course of the.project and both hardware
and software COTS became obsolete
more quickly than we had previously ex-
perienced. Project and vendor personnel
worked closely together, and the vendors
provided early notice when a product was
planned for upgrade or obsolescence.
When we learned of either a product’s re-
vision or its impending obsolescence, we
managed it as a risk item. The changes
were analyzed to determine if the system
would be affected. We then prototyped
the revised or replacement product and
integrated it with the system. We did this
off-line and did not change the software
baseline until the product had been thor-
oughly prototyped and we were confident
it could be replaced. This required
changes to the application code on nu-
merous occasions, but if and when the
new product was placed into the system,
it was a planned actvity.

& Unanticipated difficulties with subcon-
tracted itesns. During the project develop-
ment phase, we assessed subcontracted
items from a particular vendor to be risky
because of the vendor’s questionable “fi-
nancial health.” We identified the vendor’s
financial status as a risk item and developed
and implemented a risk mitigation plan.
This plan included research to determine
if there were any other vendors who could

MAY/JUNE 1997

support the project’s requirements. When
we determined that this was not the case,
we initiated discussions with the vendor to
start an escrow account for all the engi-
neering information and copies of their
software code, in case they could no longer
support the project’s needs. The vendor is
now stronger financially and the escrow
account is no longer necessary.

¢ Unanticipated maintenance and/or
support costs. Maintenance costs grew ata
faster pace than we originally planned
due to changes in the vendor cost rate
structures, product changes, and hard-
ware upgrades. We negotiated changes

with the vendors to minimize the impact
of these costs and worked out mutually
beneficial terms.

he TRW Ada Process Model,
which supports constantly chang-
ing requirements, has evolved into the
TRW Data Technologies Division stan-
dard software development process.
Instantiations of this process are now
being used throughout industry.
We used risk management through-
out the life of our project as an integral
part of the management process. Risk

REFERENCES

pp. 61-72.

1. The Standish Group International, Charting the Seas of Information Technology, Dennis, Mass., 1994.

2. L.K. Mosemann, Guidelines for Successful Acquisition and Management of Software Intensive Systems,
Dept. of Defense, Version 1.1 - Vol. 1, Feb. 1995.

3. EH. Conrow, “The Use of Ordinal Scales in Defense Systems Engineering,” Proc. 1995 Acquisition
Research Symp., Defense Systems Mgt. College, 1995, pp. 455-463.

4. Air Force Systems Command, “Software Risk Management,” AFSC Pamphlet 800-45, Sept. 1988.

5 B.W. Boehm, “A Spiral Model of Software Development and Enhancement,” Computer, May 1988,

11.

12.
13.
14.

15.
16.
17.

18.

6. R.N. Charette, Software Engineering Risk Analysis and Management, McGraw-Hill, New York, 1989.
. M. Evans, “Thread of Failure: Project Trends That Impact Success and Productivity,” NetFocus, No.

203, Software Program Managers Network, Naval Information System Management Center, Mar.
1994,

. C. Jones, “Assessment and Control of Software Risks,” Proc. 2nd Software Eng. Inst. Conf. Sofiware

Risks, SEI, Carnegie Mellon Univ., Pittsburgh, 1993.

. C. Jones, “Risks of Software System Failure or Disaster,” American Programsmer, Mar. 1995, pp. 2-9.
10.

F.J. Sisti and S. Joseph, “Software Risk Evaluation Method,” Tech. Report CMU/SEI-94-TR-19,
SEI, Carnegie Mellon Univ., Pittsburgh, 1994.

E.H. Conrow, “Some Long-Term Issues and Impediments Affecting Military Systems Acquisition
Reform,” Acquisition Review Quarterly, Summer 1995, pp. 199-212.

Dept. of Defense, “Defense Acquisition,” DoD Directive 5000.1, Mar. 1996.

Dept. of Defense, “Software Development and Documentation,” MIL-Standard-498, Dec. 1994.
E.H. Conrow and M.A. Fredrickson, “Some Considerations for Implementing Risk Management in
Defense Programs,” Program Manager, Defense Systems Mgt. College, Jan.-Feb. 1996, pp. 6-11.
Dept. of Defense, Defense Acquisition Deskbook, Version 1.3, Dec. 31, 1996.

B.W. Boehm, Software Risk Management, IEEE Comp. Soc. Press, Los Alamitos, Calif., 1989.

W. Royce, “TRW’s Ada Process Model for Incremental Development of Large Software Systems,”
Proc. ICSE 12, Mar. 1990, pp. 2-11. :

D.L. Parnas, “Designing Software for Ease of Extension and Contraction,” IEEE Trans. Software
Eng., Mar. 1979, pp. 128-137.

Address questions about this article to Conrow at (310) 374-7975 or ehc@earthlink.net.

IEEE SOFTWARE

management s an iterative process. Each
project’s risks are unique and must be
identified, analyzed, mitigated, and
tracked. When you encourage people to
identify risk items (that s, you don’t shoot
the messenger), potential risks are often
identified early enough to let you act
rather than react. Our project also shows
that appropriate metrics (which evolve
with the project phases) are a necessary
tool to help with this early risk identifi-
cation. A well-defined and disciplined risk
management process can increase the
level of communication both vertically
and horizontally. &

Edmund H. Conrow is
the founder and owner of
Acquisition and
Technology Associates.
Conrow has more than 20
years’ experience applying
project management and
technical skills to moder-
ate to high complexity
programs. He has served a
broad range of clients, including: industry, feder-
ally funded research centers, national laboratories,
and government. His practice is focused on acqui-
sition strategy, engineering design analysis, risk
management, and systems engineering. Conrow
has developed a variety of risk management
approaches and successfully implemented them on
numerous programs.

Conrow received a BS and an MS in nuclear en-
gineering from the University of Arizona, a PhD in
general engineering from Oklahoma State
University, and 2 PhD in public policy analysis from
the RAND Graduate School. He is a senior member
of AIAA and a member of the IEEE.

Patricia Shishido is an Integrated Product Team
(IPT) lead on TRW’s Optima21, an automated
framework under development that will utilize and
improve existing methods and tools to enable orga-
nizations to be established and run more efficiently.
Most recently, she was project manager of a major
DoD contract where this risk management program
was implemnented. Her 20 years of experience
includes both management and technical responsi-
bilities in systems engineering and software
engineering disciplines—including requirements
management, design, development, integration,
test, and maintenance—on large and complex sys-
tems for various government customers.

Shishido holds a BS in mathematics from the
University of Redlands, with foreign studies at
Kansai University in Osaka Japan.

